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INTRODUCTION 

Nature of the Metal-Phosphorus Link 

In 1950 Chatt (1) proposed that co-ordination in transi­

tion metal complexes with phosphorus ligands occurs by two 

types of bonds: (a) a a-bond formed by the overlap of a filled 

sp^ orbital of phosphorus with a vacant orbital of the metal, 

and (b) a ir-bond formed by the overlap of a filled d orbital on 

the metal with vacant d orbitals on the phosphorus atom. He 

introduced this dative n-bonding concept to account for the 

fact that amines formed stable compounds with both BFg and 

PtClg whereas PF^ formed a very stable complex with PtClg but 

no adduct with BF^. Since that time considerable work and con­

troversy has centered around the nature of the metal-phosphorus 

bond. 

Chatt extended his interest in this problem and has done 

a broad study of the nature of the co-ordinate link between 

platinum and phosphorus (2-6). On the basis of the stability 

of binuclear complexes, trans-[(R^M)ClPtCl^PtCl(MR^)] (R = CgH^; 

M = N, P, As, Sb, Hi), Chatt concluded that the co-ordinating 

affinity of the ligands towards PtClg was PRg > AsRg > NRg > 

BiRg (2). This is in contrast to the work by Coates (7) in 

which it was found that the co-ordinating affinity of MRg 

(R = CHg; M = N, P, As, Sb, Bi) towards GafCHg)^ was NRg > PR^ 

> AsRg > SbRg > BiRg. It would thus appear that the effect 

of dir-dfr bonding as far as gallium is concerned is subordinated 
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to the decrease of true donor tendency with increasing atomic 

weight whereas the relative importance of n-bonding is much 

greater in platinum complexes. 

Further support for the importance of ^-bonding in plati­

num complexes stemmed from the equilibrium studies between cis-

and trans-PtCl^(MEt^)^ (M = P, As, Sb)(4, 5). After allowance 

was made for the possibly greater association of the solvent 

benzene with the cis-isomers and a large liberation of energy 

owing to favorable spatial redistribution of electric charge 

when the highly polar cis-isomers were converted to the non-

polar trans-isomers, the cis-isomers were found to be more 

stable by approximately 10 kcal./mole. With PtCl2(PEt2)2 this 

was believed to represent the increase in bond energy when the 

phosphorus atoms are in a cis as compared with a trans config­

uration. If d orbitals in the phosphorus and platinum atoms 

play a part in the binding then in the cis-isomer each phos­

phorus atom can be bound by a different d orbital in the 

platinum atom whereas in the trans-isomer each phosphorus atom 

is competing for the same d orbitals leading to weaker binding. 

However since the total bond strengths of the cis-isomers of 

PtClgCMEtglg (M = P, As, Sb) are all approximately 10 kcal./ 

mole higher than those in the trans-isomers, then the strength 

of the ir component of the M-Pt bond must stay constant through­

out the series if the difference is due to ir-bonding. If this 

is so then the strength of the a component must fall from P to 

Sb to account for the qualitatively observed weakening of the 
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M-Pt bond. 

Redox potentials also indicate some degree of ir-bonding 

(6). Upon varying the ligand in the couple LgPtCl^ - LgPtClg, 

the only important factor would be the electron affinity of 

the metal as it is adjusted by the electron affinities of the 

ligands. If ligands withdraw electrons from the metal it 

should be more easily reduced. Electron withholding in the a 

donating bond would be inductive while electron withdrawal 

through dative ir-bonds would be mesomeric in character. 

Electron withholding will be similar in cis and trans compounds 

whereas mesomeric withdrawal will be less in cis compounds 

where the ligands can withdraw electrons from different d 

orbitals. Thus cis compounds should have a greater resistance 

to oxidation (redox potential higher) and this is found to be 

the case. 

Craig et (8) have given a critical discussion of 

TT-bonding in metal complexes. Overlap integrals were used as 

a criterion of bond strength in studying chemical bonds which 

may require the use of d orbitals. Overlap integrals were 

often found to be large enough to give quite strong ir-bonds and 

were rather insensitive to differences in size of the bonded 

orbitals. 

The dative ir-bonding concept was used quite successfully 

in accounting for the trans-effect (3, 9, 10). At that time 

all the ligands of high trans-effect could form ir-bonds by 

utilizing the d orbitals of the metal. Thus it was proposed 
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that the forces responsible for directing effects originate 

mainly in electron withdrawal occasioned by dative ir-bond 

formation from a d orbital of the metal towards a ligand A of 

high trans effect. This electron withdrawal would increase 

the electron affinity of the metal atom and perhaps the strength 

of a bonding to all other ligands B. However the electron with­

drawal would decrease any tendency of the ligand B in the trans 

position to A to form a dative Tr-bond. The M-B bond would 

thus be weakened if the dative ir-bond is an essential component. 

On the other hand if B, trans to A, has little tendency to 

form dative bonds, its attachment to the metal could be 

strengthened by the presence of A. However the discovery that 

the hydride ion (which cannot possibly form dative ir-bonds) 

has a trans-effect comparable to the cyanide ion (11) casts 

some doubt on the importance of u-bonding in the trans-effect. 

In conjunction with his other studies Chatt has determined 

the dipole moments of the cis platinum complexes (3, 5, 6). 

In most cases the high dipole moments indicate that the plati­

num-phosphorus link is mainly a single co-ordinate bond (5, 6). 

An exception to this is cis-PtClp(PF^)2 which has a low dipole 

moment and therefore the Pt-P bond may have some double bond 

character (3). 

A great deal about the nature of metal-phosphorus bonding 

has been inferred from carbonyl stretching frequencies in sub­

stituted metal carbonyls although the conclusions reached by 
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various authors on the interpretation of the results have not 

been consistent. Since there are several reviews dealing with 

metal carbonyl derivatives, (12-15) only the several explana­

tions arising from the infrared studies will be discussed here. 

The basis for the various conclusions on metal-phosphorus 

bonding in carbonyl complexes is the generally accepted bonding 

model illustrated in Figures 1 and 2. Bonding involves both 

co-ordinate o-bond formation in which the lone-pair electrons 

on the carbon atom interact with a vacant metallic orbital 

(Figure 1) and metal-ligand ir-bonding in which filled metallic 

d orbitals interact with low-lying vacant antibonding it orbitals 

of the CO group (Figure 2). Trivalent phosphorus ligands which 

can participate in both a and it bonding with vacant metal orbi­

tals and filled metallic d orbitals respectively, would compete 

with the carbonyl ligands and would thus affect the carbonyl 

stretching frequencies. 

Cotton and Kraihanzel have derived nonrigorous secular 

equations based on a simple force field model through which 

sets of force constants for the series of metal carbonyl 

derivatives may be obtained (16, 17). Although the absolute 

values for these force constants have no significance they are 

useful in assigning stretching frequencies and they are claimed 

to give internally consistent results for the series of 

derivatives M(CO)^ L . Differences in force constants should 
b—n n 

therefore bear a direct relation to the actual numbers of it 

electrons involved in the M-C and c-0 bonds and to the bond 
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Figure 1. CO->M a-bond formation 

Figure 2. M-^CO dir-pir* "back-bonding" 
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(^C©=0—»©M<]^ce=O: 



www.manaraa.com

8 

orders. Cotton (17) has proposed that changes in C-0 force 

constants (and stretching frequencies) with different donor 

groups are a function only of the n-accepting ability of the 

ligand in question and that all M(CO)gL complexes in which 

there is no M-L ir-bonding should have roughly similar C-0 force 

constants. Thus in a series of the type M(C0)gPY2* a rise in 

the electronegativity of Y is accompanied by an increase in 

the metal phosphorus ir-bonding. This in turn causes a depopu­

lation of the CO antibonding orbitals and an increase in the 

CO force constants. From such studies of v(CO), a spectro-

chemical series of the ir-bonding ability of a series of ligands 

has been proposed (18). 

Bigorgne and co-workers have done an extensive study of 

carbonyl stretching frequencies in metal carbonyl derivatives 

(19-25). They have observed that the phenomenon of the 

lowering of the C-O frequencies is closely related to that of 

the raising of the M-C frequencies. In addition the curve of 

C-0 force constants is linear with the degree of substitution 

for a given ligand PYg. For all the ligands the slopes of 

these straight lines are a function of the effective electro­

negativity of Y and they vary linearly with Taft's polar sub­

stituent constant a*. Since their plot of v(CO) versus a* was 

linear, they concluded that the lowering of the C-O stretching 

frequencies when the ligand varies from PF^ to PRg is funda­

mentally an inductive phenomenon (24). Because PR^ has a 

donor capacity which is much larger than that of PFg the 
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negative charge on the metal is distributed to the CO through 

the M-C-0 IT orbitals. From the observation that the plot of 

C-0 force constants versus degree of substitution was a straight 

line they concluded that ligands in complexes cannot be charac­

terized by definite donor-acceptor capacities but that this 

property varies in proportion to the degree of substitution 

(25). 

Recently Darensbourg and Brown have concluded from infra­

red intensity studies of substituted metal carbonyls that there 

is appreciable ir-bonding between metals and phosphorus or 

arsenic ligands (26). However they also conclude that there 

is no increase in ir-bonding from the metal to the remaining CO 

groups when M(CO)gL is formed from the parent carbonyl. The 

addition of negative charge on the metal from ligand L should 

weaken the metal-carbon a-bond and thus lower the C-0 force 

constant and stretching frequency by reducing the polarity of 

the C-0 bond. This concept, however, seems to be at variance 

with the observations of Bigorgne (25) that M-C force constants 

increase while C-0 force constants decrease. 

If significant metal-phosphorus dir-dir bonding were 

occurring, such multiple bonding should manifest itself in the 

shortening of metal phosphorus bond length. Many metal phos­

phorus bond lengths are known (27-30) and indeed the bond 

lengths are shorter than the sum of the covalent radii. How­

ever difficulties are frequently encountered in choosing 

appropriate single-bond covalent radii. Most structures that 
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have been determined involi's aryl or alkyl phosphines and there 

have been few extensions to analogous complexes containing 

more electronegative substituents on phosphorus wherein M-P 

u-bonding may be more important. It is highly probable that 

the metal phosphorus bond length is sensitive not only to sub­

stituents on phosphorus, but other ligands on the metal, geo­

metrical structure, and structural distortions due to crystal 

packing. Thus, inferences about the metal-phosphorus bond 

from M-P bond lengths would necessitate the accurate determina­

tion of a very large number of structures. 

It is noteworthy that most of the information about metal-

phosphorus bonding has been gained from indirect evidence. 

Spectroscopic parameters which are directly associated with 

the metal-phosphorus link should yield more evidence that is 

less ambiguous. Thus studies have been carried out to 

determine ligand field splitting parameters (Dq); metal-phos-

phorus stretching frequencies (v(MP)); metal-phosphorus 

coupling constants ; and phosphorus-phosphorus coupling 

2 
constants through a metal ( Jpp)• This dissertation is con-

31 31 
cerned with the determination and interpretation of P- P 

coupling constants through metal atoms. Information about M-P 

31 31 
bonds by other direct methods in conjunction with P- P 

coupling constants will be discussed in the Results and 

Discussion. Studies of phosphorus-phosphorus coupling con­

stants have an advantage over metal-phosphorus coupling 
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constants in that a wider variety of complexes can be studied 

since few metals have nuclear spins of 1/2 suitable for nuclear 

magnetic resonance studies. A brief background of n.m.r; 

spectroscopy and the basis for this study is given in the fol­

lowing subsection. 

Nuclear Magnetic Resonance Spectroscopy 

The first n.m.r. signals were independently observed in 

1945 by Bloch (31) and Purcell (32). Since that time nuclear 

magnetic resonance spectroscopy has grown until today about 

two thousand papers a year are published on the subject. 

Nuclear magnetic resonance studies can be divided into three 

parts: obtaining the spectra and analyzing them for chemical 

shifts and coupling constants; interpreting the spectra for 

the purpose of determining structural features of compounds; 

and the extension of the theory of nuclear magnetic resonance. 

There are numerous books that deal with obtaining and analyzing 

spectra (33-36). Therefore, except for the analysis of the 

X^AA'X^ system, this aspect will not be discussed here. Since 

the geometries of the systems studied in this work were 

determined independently, the use of n.m.r. techniques in 

elucidation of structures will not be treated. It might be 

mentioned that several excellent books have been published on 

the subject (33, 34, 37). Only one recent book (38) deals 

specifically with the theory of magnetic resonance and un­

fortunately it is already somewhat outdated. Since the theory 
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forms the basis of the interpretation of our results, certain 

key considerations will now be briefly developed. 

There are four possible mechanisms by which two nuclei 

with spin can interact. In addition to direct dipolar inter­

action, nuclear spins in a molecule are coupled indirectly by 

a polarization of the electronic environment which is comprised 

of three contributions. In fluids the direct dipolar effect 

averages to zero and the residual interaction energy between 

nuclei A and B takes the form 

Baa = h JAB :A ' =8 ^ 

in which I^ and Ig are the nuclear spin angular momenta (in 

units of h/2n) and is the coupling constant in Hz. The 

theory for the three mechanisms contributing to was 

originally formulated by Ramsey (39) who also showed that there 

are no cross terms between these effects in so that the 

coupling constant may be written in terms of the three separate 

contributions 

arises from the fact that a nuclear magnetic moment 

will affect the orbital motion of neighboring electrons. The 

induced electronic currents in turn produce magnetic fields 

which interact with other nuclear magnetic moments. 
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Nuclear magnetic moments will also interact by a dipole-

dipole mechanism with spin magnetic moments of neighboring 

( 2 )  
electrons giving rise to . This interaction produces spin 

polarization which leads to non-vanishing magnetic fields 

acting at other nuclei in the molecule. 

A further term must be introduced to allow for the possi­

bility that the electron may be in the same region of space as 

(3) 
the nucleus. This term, , is known as the Fermi contact 

term and is non-zero only for s electrons. The Fermi contact 

term is the only one of importance in coupling with protons 

(40). Furthermore, there is considerable evidence that the 

contact term is dominant for coupling between all atoms (41-44). 

Most theoretical studies are based on second-order pertur­

bation theory. Early calculations involving both valence bond 

(45) and molecular orbital theory (46) used an average excita­

tion energy approximation in which there was a degree of 

arbitrariness in the choice of an appropriate energy value. 

Using this approximation in molecular orbital theory necessarily 

leads to only positive coupling constants whereas many negative 

coupling constants are known experimentally. Pople and Santry 

(40) developed a molecular orbital theory which avoided the 

average excitation energy approximation and did predict both 

positive and negative signs. In their theory the Fermi contact 

term may be written in the form: 
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where 3 is the Bohr magneton, and yg are the magnetogyric 

ratios for nuclei A and B respectively, h is Planck's constant, 

(s|ô|s) are the values of the valence s atomic orbitals s^ and 

s„ at their respective nuclei and II ^ is the mutual polariza-

bility (47). Now H is given by 
V b  

occ unocc -

where (e^ - Ej) is the energy difference between occupied and 

unoccupied states, and C,. C. C. C. is the product of the 
IS^ ISg ]Sg 

coefficients of the s atomic orbitals of the coupling sites in 

the molecular orbitals ip^ (occupied) and (unoccupied). 

Problems arise with this treatment due to the sensitivity to 

cancellation of large terms of opposite sign. Recently Pople 

et al. (48) derived a self-consistent finite perturbation 

method using spin density matrices which quantitatively gives 

more accurate results than Equation 3. However for the quali­

tative treatment given here. Equation 3 is more appropriate. 

Most of the compounds in this dissertation may be classi­

fied as X^AA'X'^ spin systems. The analysis of this system 

has been worked out by Harris (49-52) and by Mowthorpe and 

Chapman (53). Although in theory it is possible to obtain the 

desired coupling constants from the A part of the n.m.r. 

spectrum, (53) in practice it is considerably more difficult 

than obtaining them from the X part and often it is impossible. 
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Unless is large or n is 1 or 2 there will be many over­

lapping lines in the A part of the spectrum. The splittings 

necessary to calculate the coupling constants are rarely 

observed because of these overlapping lines. In the following 

discussion only resonances of X nuclei are considered and it 

is assumed that all nuclei (X and A) have spin 1/2. 

All transitions occur in pairs symmetrically disposed 

about Vjj (the chemical shift) and so may be deleted from all 

expressions. Furthermore it is convenient to describe two 

constants L and N: 

^ " I'^AX ' "^AX' I S 

N = I ® 

If we first assume that is zero then , L and N are 

the only parameters needed to describe the transition energies. 

In all spectra of this spin system there will be an intense 

doublet of separation N comprising half the total intensity. 

There will be 2n pairs of other lines in each spectrum. A 

bar diagram of the typical spectrum when n = 1 is given in 

Figure 3. The separation of the outer lines in the general 

X^AA'X^ system is given by 

SqCx) = [X^L^ + JaA,2]l/2 + [(X - 1)V + ? 

where x is an integer between 1 and n inclusive. The separation 
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Figure 3. Bar diagram of the X part of an XAA'X* system in 
which N = 8, L = 10, and = 5 Hz 
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N 

So 
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of the inner lines is given by; 

Si(x) = [xV + - [(X - 8 

The relative intensities of each inner and outer line are 

given by; 

n (r)nî ni 
Z^(X) = (1 + g)/2n (n-r)!r!(n-r+x)1(r-x)i ^ 

n (r)ni nl 
ZqÎX) - (1 - g)/2n (n-r)!r!(n-r+x)!(r-x)! 10 

where g is a perturbation factor which arises due to mixing of 

the ag and 3a AA' spin states and is given by: 

_ tx (x ~ ] 

® (IxV + Jaa.2][(x - l)V + 

On this scale each line of the doublet of separation N will 

have intensity If there is long range XX' coupling 

each line other than the intense doublet of separation N will 

be split into a 1:3:3:1 quartet with a separation equal to Jjqji 

Using Equations 9 and 10 it can be shown that the next 

most intense lines to the doublet of separation N are those 

when X = 1 and that those lines when x > 1 are much less 

intense and often not observed. Thus if the inner and outer 

lines due to x = 1 are observed "^ax* "^aa' be 
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calculated using Equations 5-8. However if is large 

relative to L, the separation of the outer lines becomes 

greater and their relative intensity becomes much less while 

the separation of the inner lines becomes less and their 

relative intensity becomes greater. The outer lines become 

unobservable and the inner lines overlap giving rise to an 

apparent triplet as shown in Figure 4. If this occurs, the 

coupling constants can be obtained in three ways: (a) using 

high radio frequency power to saturate the inner lines which 

enhances the intensity of the outer lines and often makes them 

observable (b) using a computer program to simulate the observed 

band shape (see Appendix) and (c) using sidebands in con­

junction with double resonance techniques. Double resonance 

techniques furthermore often yield the signs of the coupling 

constants (52, 54). Of the three methods, observation of the 

outer lines gives the most accurate value of • If 

greater than 100 Hz the intensities of the x = 1 outer lines 

will be less than 1/1000 of the intensity of each line of the 

doublet of separation N. In these cases it is impossible to 

observe the outer lines with the present instrumentation at 

Iowa State University. The use of double resonance techniques 

in obtaining values of is fully discussed elsewhere (54). 

The easiest method of obtaining values of , which was used 

extensively in this work, is by computer simulation. A 

critique of this method is given in the Results and Discussion 

section. 
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Figure 4. Apparent triplet for the X part of an XgAA'Xg system arising from over­

lapping of the inner lines when J^, » L. The intensity of the % = 1 

outer lines has been exaggerated 
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Purpose of Research 

Because of the large confusion concerning the nature of 

the metal phosphorus link. It was believed that determination 

31 31 
of P - P coupling constants through metals would be useful 

In gaining further knowledge about metal-phosphorus bonding. 

This belief Is based on the fact that coupling constants are 

dependent upon the electronic environment between the coupling 

sites. In complexes, this environment will be dependent upon: 

(a) the nature of the metal atom, (b) the stereochemistry of 

the complex, (c) the substituents on the phosphorus atoms, and 

(d) the other ligands in the complex. The results will be 

discussed using concepts derived from both valence bond and 

molecular orbital theories. The phosphorus ligands used in 

this work and by other authors are tabulated in Table 1. 
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Table 1. Phosphorus ligands used in complexes for which 
31 31 
P- P coupling constants have been determined. 

ID P(CH3)3 (XVI) P(C2H5)2(CgH5) 

(II) P(CHgO)3CCH3 (XVII) P(n-C4Hg)2(CgH5) 

(III) P(CHgCl)3 (XVIII) PH(CgH5)2 

(IV) P(SCH3)3 (XIX) PtCgHs), 

(VA) P(SCH2)3CCH3 (XX) P(0C2Hg), 

(VB) P(SCH2)3CC5Hii (XXI) P(OCgH5)3 

(VI) PEN (CH3)2]3 (XXII) P(CH2C1)F2 

(VII) PtN(CH3) (CgH5)]3 (XXIII) P(CCl3)F2 

(VIII) P(0CH3)3 (XXIV) P(CgH5)F2 

(IXA) P(0CH2)3CCH3 (XXV) P[N(CH3)2lP2 

(IXB) P(0CH2)3CC2H5 (XXVI) P[N(C2H5)2]F2 

(IXC) P(0CH2)3CC3Hy (XXVII) P(NC5H^O)F2 

(IXD) P(0CH2)3CC5Hii (XXVIII) P(OCgH5)F2 

(X) PF3 (XXIX) P (02^584)? 

(XI) PH3 (XXX) C2H5N(PF2)2 

(XII) PfCgHs's (XXXI) P(CF3)3 

(XIII) P(n-C3H7)3 (XXXII) P(CgH5)2(CF3) 

(XIV) P(n-C4Hg)3 (XXXIII) P(CF3)F2 

(XV) P(CH3)2(CgH5) 
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EXPERIMENTAL 

Instrumentation 

Infrared spectra were obtained on Perkin-Elmer Models 21 

and 237B and Beckman Models 8 and 12 spectrometers. Proton 

n.m.r. spectra were obtained on a Varian A-60 spectrometer 

using tetramethylsilane as an internal standard or on a modi­

fied Varian HR-60 spectrometer using benzene as a locking 

signal. The ^^P n.m.r, spectra were obtained on the Varian 

HR-60 spectrometer using 85% aqueous phosphoric acid as an 

external standard. Mass spectra were obtained on an Atlas CH-4 

single focusing spectrometer at an energy of 70 ev. 

Analyses of Compounds 

Micro-analyses were carried out by Galbraith Laboratories, 

Knoxville, Tenn, 

Analyses of N.M,R. Spectra 

In cases where the outer peaks were unobservable, the 

spectra were analyzed either by double resonance techniques 

(54) or by using the computer program given in the Appendix 

which is written in Fortran IV for an I.B.M. 360/65 computer. 

Materials 

Iron pentacarbonyl was purchased from Strem Chemicals Inc., 

chromium, molybdenum, and tungsten hexacarbonyls were purchased 

from Pressure Chemical Co.; and manganese decacarbonyl, pal­

ladium dichloride and potassium tetrachloroplatinate were 



www.manaraa.com

25 

purchased from Alfa Inorganics Inc. Trimethyl phosphite (VIII) 

and hexamethylphosphorous triamide (VI) were purchased from 

Eastman Kodak Co. 

Preparations of Intermediates 

The preparations of the ligands (II) (55), (III) (56), 

(IV) (57), (V) (58) , (IX) (59) have been reported previously as 

have the preparations of (I) and of Agi(I) (60). The prepara­

tions of chromi\am(nonbornadiene) tetracarbonyl (61), molybdenum-

(nonbornadiene)tetracarbonyl (61), dichlorobis(benzonitrile)-

palladium (62), and the manganese pentracarbonyl halides (63) 

have also been reported before. Tungsten (N, N, N*, N'-tetra-

methyl-1, 3-diaminopropane) tetracarbonyl was a gift from Dr. 

G. R. Dobson of the University of South Dakota at Vermillion. 

Preparation of N, N', N"-trimethyl-N, N', N"-triphenylphos-

phorous triamide (VIII) 

Attempts to prepare this ligand by a previously reported 

synthesis (64) failed but the following procedure proved 

successful. In 100 ml. of liquid NH^ was dissolved 6.9 gm. 

(0.3 moles) of sodium. A crystal of Fe^NOgjg'&HgO were added 

to catalyze the formation of NaNHg. To this was added dropwise 

32.1 gm. (0.3 moles) of methylaniline. Anhydrous diethyl ether 

(125 ml.) was added dropwise and the ammonia was allowed to 

evaporate after which the mixture was refluxed for 30 min. to 
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insure complete removal of the ammonia. The mixture was then 

cooled to 0° and 13.7 gm, (0.1 moles) of phosphorus trichloride 

in 50 ml. of anhydrous ether was added dropwise. After 

stirring the mixture at 25® for 3 hrs. the sodium chloride was 

removed by filtration. The filtrate was taken to dryness 

yielding a white solid which was recrystallized from benzene 

in 34% yield, m.p. 208-210° (lit. 208-209°). The peak cor­

responding to the highest mass in the mass spectrum was at 106 

(probably a N^CHglOCgHg) fragment) . The n.m.r. spectrum 

3 
consisted of a doublet at 2.67 p.p.m. ( Jp^ = 2.8 Hz) and a 

multiplet at ca. 7.1 p.p.m. 

Preparations of Complexes 

The following compounds were a gift from Dr. R. J. Clark 

of Florida State University, Tallahassee, Florida (65-67): 

Cr(CO)g(X), cis-Cr(CO)^(X)2/ Mo(CO)g(X), cis- and trans-

Mo(CO)4(X)2/ W(CO)5(X), cis- and trans-Mo(CO)4(X)2r Fe(CO)4(X), 

Fe(CO)3(X)2/ Ni (CO) 2 (X) 2 r cis-HMn (CO) 4 (X), trans-HMn (CO) ̂ (X) , 

l,2,3-HMn(CO)3(X)2f l,2,4-HMn(CO)3(X)2 and 1,2,6-HMn(CO)3(X)2* 

The following compounds were a gift from Dr. J. M. Jenkins, 

Iowa State University, Ames, Iowa (68): cis-PdCl^(IXD)21 

trans-Pdl2 (IXD)2# cis-PtCU (IXD) cis-Ptl^ (IXD) 

cis-PtCl2(VIII)2f cis-Ptl^CVIII)^, cis-PtCl^(VI)2^ trans-

PtCl2(VI)2, trans-Ptl^CVI)^' cis-PdCl2(II)o/ trans-Pdl^(II)n, 

trans-PdClo(III)^, trans-Pdl^(III)2 and cis-Mo(CO)4(III)2» The 

following compounds were a gift from Dr. A. C. Vandenbroucke> 
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Iowa State University, Ames, Iowa: cis-Cr(CO)(IXA)^, 

trans-Cr(CO)^(IXB)^, trans-Fe(CO)^(IXB)^ and Ni(CO)j(IXA) 

Cis- and trans-Mo(CO)^(VI) (IXB) were gifts from Mr. G. 

Wulfsberg and trans-Fe(CO)j(VI)(IXC) was a gift from Dr. R. L. 

Keiter, Iowa State University, Ames, Iowa. 

The following compounds were prepared using the method of 

Stanclift and Hendricker (69): cis-Mo (CO)^(IXC)o, trans-

Mo(CO)4(IXC)2f cis-W(CO)^(IXC)^, and trans-W(CO)^(IXC)o. The 

following compounds were synthesized using the method of 

Jenkins and Verkade (68): cis-Cr(CO)^(I)^, trans-Cr(CO) 

cis-Mo(CO)4(1)2f cis-PdClo(VIII)^, Pdl2(VIII)2, trans-PdCl^(VI)^ 

and trans-Pdl2(VI)2» The following compounds were prepared 

using the method of King (70): trans-Cr(CO)^(VI)trans-

Mo(CO)4 .(VI)2f trans-Fe (CO) 3 (VI) 2 and Ni (CO) 2 (VI) 2* The method 

of Poilblânc and Bigorgne (21) was used to prepare trans-

Mo(CO)^(VIII)2 while the method of Mathieu and Poilblanc (71) 

was used to prepare cis-Mo(CO)^(VIII)2* The method of Coates 

and Parkin was used to prepare trans-Pdl^ (Do (72). 

Preparation of cis-PdCl^(I)^ 

Although cis-PdCl2(I)2 has been prepared previously by 

another route (72), the following method was used because of 

the ease in synthesizing the starting material PdCl2(CgHgCN)2» 

One-half milliliter (ca. 6.6 mmoles) of trimethylphosphine was 

condensed onto a solution of 0.7 gm. (1.8 mmoles) PdCl2(CgH^CN)2 

in 25 ml. benzene at -196®. After stirring the mixture for 
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1 hr. at 25® the solvent was removed under reduced pressure. 

After extraction of the complex with chloroform and removal of 

the chloroform from the extract under reduced pressure, the 

complex was recrystallized from 50% ethanol-ether in 76% yield. 

The n.m.r, spectrum of the complex prepared in this manner was 

identical to the n.m.r, spectrum of cis-PdCln(I)n prepared by 

the previously reported method. 

Preparation of cis-Mo(CO)^ (VI)^ 

To 0.6 gm. (2.0 mmoles) of molybdenum(norbornadiene)-

tetracarbonyl in 25 ml. of pentane was added 1.0 gm. (6.1 

mmoles) of hexamethylphosphorous triamide. After stirring the 

mixtrue at 25® for 30 min. the complex was filtered off in 88% 

yield. The carbony1 stretching frequencies observed in chloro­

form were at 1894(s), 1908(sh) and 2012(m) cmT^ 

Preparation of cis-Mo(CO)^(VII)^ 

A mixture of 2.0 gm. (7.5 mmoles) of molybdenum hexa-

carbonyl and 6.0 gm. (17.2 mmoles) of (VII) in 125 ml. toluene 

was refluxed for 16 hrs. After cooling and filtering the 

mixture, its volume was reduced under reduced pressure until 

crystals began forming. Thirty milliliters of pentane was then 

added and the mixture was cooled to -20°. The complex, after 

separating by filtering, was recrystallized from toluene-

pentane in ca. 20% yield. The carbony1 stretching frequencies 

observed in chloroform were at 1911(s), 1933(sh) and 2125(m)cm.^ 
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Preparation of trans-W(CO)^(VI)^ 

Although the preparation of this complex has been reported 

previously, (70) the ease of preparing the tungsten complex 

precursor makes the following method superior. To 0.86 gm. 

(2.0 mmoles) of tungsten(N,N,N',N'-tetramethyl-1,3-diaminopro-

pane)tetracarbonyl in 50 ml. of toluene was added 1.0 gm. 

(6.1 mmoles) of hexamethylphosphorous triamide. After stirring 

for 48 hrs. at 25® the solvent was removed under reduced pres­

sure. The residue was dissolved in hot pentane, the small 

amount of suspended material filtered, and the filtrate cooled 

to -78® giving pale yellow crystals in ca. 60% yield. The 

n.m.r. and infrared spectra were identical to those reported 

previously (70). 

Preparation of cis-W(CO)^(I)^ 

Although the preparation of this complex has been reported 

previously (68) the ease of preparing the starting tungsten 

complex makes the following method superior. One-half milli­

liter (ca. 6.6 moles) of trimethylphosphine was condensed onto 

a solution of 0.86 gm. (2.0 mmoles) of tungsten(N,N,N',N'-

tetramethyl-1,3-diaminopropane)tetracarbonyl in 30 ml. of 

benzene at -196®. After stirring at 25® for 48 hrs. the solvent 

was removed under reduced pressure. The residue was dissolved 

in hot pentane, the suspended solids filtered, and the fil­

trate cooled to -78® giving yellow crystals in 50% yield. The 



www.manaraa.com

30 

n.m.r. spectrum of the compound was identical to the spectrum 

of an authentic sample.^ 

Preparation of cis- and trans-Mo(CO)^(VIII)(IXB) 

The monosubstituted complex Mo(CO)g(IXB) was prepared as 

described by Verkade et al. (73). A solution of 8.2 gm. 

(20.6 mmoles) of Mo(00)^(1X3) and 10.0 gm. (80.6 mmoles) of 

trimethylphosphite in 125 ml. methylcyclohexane was refluxed 

for 96 hrs. The solvent was removed under reduced pressure 

leaving an oily residue which was eluted with benzene on a 

silica gel column. Six compounds were obtained, of which, 

four were identified by comparison of their n.m.r. spectra 

with those of authentic samples. The products collected in 

order of their elution were: trans-Mo(CO)^(VIII)^, cis-

Mo(CO)4(VIII)2/ trans-Mo(CO)^(VIII)(IXB), (IXB), cis-Mo(CO)^ 

(VIII)(IXB), and trans-Mo(CO)^(IXB)2• Mass spectra of both 

the cis- and trans-Mo(CO)^(VIII)(IXB) showed the expected 

parent ion patterns from 490 to 498 due to the various isotopes 

of molybdenum. 

Preparation of cis-Cr(CO)^(VA)^ 

A solution of 0.41 gm. (1.6 mmoles) of chromium(norborn-

adiene)tetracarbonyl and 0.63 gm. (3.2 mmoles) of (VA) in 50 ml. 

^J. M. Jenkins, Ames, Iowa. N.M.R. data of transition 
metal complexes. Private communication. 1966. 
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benzene was stirred at 25® for 48 hrs. The solvent was 

removed under reduced pressure giving a pale greenish-yellow 

solid which was recrystallized from ca. 50% benzene-pentane in 

ca. 60% yield. The carbony1 stretching frequencies observed 

-1 
in chloroform were at 1931(s), 1957(sh) and 2033(m)cm. . 

Analysis; Calc'd. for Cr(CO)^(VA)C ,  30.21; H, 3.26; 

S, 34.56 

Pound: C ,  30.91; H, 3.70; S, 35.07 

Preparation of trans-Cr(CO)^(VB)g 

A solution of 0.41 gm. (1.6 mmoles) of chromium(norb6rna-

diene)tetracarbonyl and 0.8 gm, (3.2 mmoles) of (VB) in 50 ml. 

benzene was stirred at 25® for 48 hrs. The solvent was removed 

under reduced pressure yielding on oil. Dissolving the oil in 

pentane and cooling to -20® gave a crystalline compound which 

melted below room temperature. The carbonyl stretching fre­

quency obseirved in chloroform was at 193 5(s)cm7^. 

Preparation of trans-Cr(CO)^(IV)g 

A solution of 0.41 gm. (1.6 mmoles) of chromium(norborna-

diene)tetracarbonyl and 0.55 gm. (3.2 mmoles) of (IV) in 50 ml. 

of benzene was stirred at 25® for 48 hrs. The solvent was 

removed under reduced pressure yielding an oil. Attempts to 

form a crystalline compound failed. The carbonyl stretching 

frequency observed in chloroform was at 1925(s) cm.^. 
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Preparation of cis-Mo(CO)^(VA)g 

A solution of 0.4 gm, (1.3 iranoles) of molybdenum-

(norbornadiene)tetracarbonyl and 0.53 gm. (2.7 mmoles) of (VA) 

in 50 ml. of benzene was stirred at 25® for 12 hrs. The 

solvent was removed under reduced pressure giving a pale yellow 

solid which was recrystallized from ca. 50% benzene-pentane in 

ça. 60% yield. The carbony1 stretching frequencies observed 

in chloroform were at 1945(s), 1965(sh), and 2045(m)cmT^. 

Analysis: Calc'd. for Mo(CO)^(VA)g : C, 28.00; H, 3.02; 

S, 32.63. 

Pound: C, 28.73; H, 3.17; S, 33.04. 

Preparation of cis-Mo(CO)^(VB)^ 

This compound was prepared in an analogous manner to that 

of cis-Mo(CO)^(VA)2 in ça. 60% yield. The carbonyl stretching 

frequencies observed in chloroform were at 1945(s), 1965(sh), 

and 2045(m)cmT^. 

Preparation of cis-Mo(CO)^(IV)^ 

A solution of 0.4 gm. (1.3 mmoles) of molybdenum-

(norbornadiene)tetracarbonyl and 0.46 gm. (2.7 mmoles) of (IV) 

in 50 ml. of benzene was stirred at 25° for 8 hrs. The solvent 

was removed under reduced pressure yielding an oil. Attempts 

to form a crystalline compound failed. The carbonyl stretching 

frequencies observed in chloroform were at 1945 (s), 1955(s), 

and 2045(m)cmT^. 
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Preparation of cis-W(CO)^(VA)g 

A solution of 0.4 gm. (1,0 inmoles) of tungsten(cyclo-

octadiene)tetracarbonyl and 0.4 gm. (2.0 mmoles) of (VA) in 

50 ml. of benzene was stirred at 25® for 8 hrs. The solvent 

was removed under reduced pressure giving a pale yellow solid 

which was recrystallized from ca. 50% benzene-pentane in ca. 

60% yield. The carbonyl stretching frequencies observed in 

chloroform were at 1927(s), 1976 (s), and 2041 (m)cm. 

Preparation of cis-W (CO)^(IV)^ 

A solution of 0.4 gm. (1.0 mmoles) of tungsten(cyclo-

octadiene)tetracarbonyl and 0.35 gm. (2.0 mmoles) of (IV) in 

50 ml. of benzene was stirred at 25" for 6 hrs. The solvent 

was removed under reduced pressure yielding on oil. Attempts 

to form a crystalline compound failed. The carbonyl stretching 

frequencies observed in chloroform were at 1920(s), 1935(sh), 

and 2035(m)cm7^. 

Preparation of cis-Mn(CO)^(VI)X(X = Br, I) 

A solution containing slightly greater than a 2:1 molar 

ratio of (VI) to manganese pentacarbonyl halide was refluxed 

in 30 ml. of pentane for 3 hrs. On cooling to -20° the product 

precipitated and was used without further purification. The 

carbonyl stretching frequencies observed in chloroform were at 

1942(s), 2000(s), 2083(m)cmT^ for X = Br and I, respectively. 
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Preparation of cis-Mn(CO)^(IXC)X(X = CI,Br,I) 

A solution containing slightly greater than a 2:1 molar 

ratio of (IXC) to manganese pentacarbonyl halide was refluxed 

in 30 ml. pentane for 4 hrs. at which time the cis complex had 

precipitated. The product was used without further purifica­

tion. The carbony1 stretching frequencies observed in chloro­

form were at 1972 (s), 2028 (s), 2110 (m)cmT^; 1980 (s), 2020 (s), 

2105(m)cmT^; and 1984 (s), 2020 (s), 2105(m)cm.^ for X = Cl, Br, 

and I, respectively. 

Preparation of 1 , 2 , 4 - M n ( C 0 ) ^ ( V I )= Cl, Br) 

A solution containing slightly greater than a 2:1 molar 

ratio of (VI) to manganese pentacarbonyl halide was refluxed in 

30 ml. of pentane for 6 hrs. On cooling to -78® the product 

precipitated and was used without further purification. The 

carbonyl stretching frequencies observed in chloroform were at 

1887 (s), 1946 (s), 2024(w)cm7^ and 1901 (s), 1938 (s), 2020(w)cm7^ 

for X = Cl and Br, respectively. 

Analysis: Calc'd for Mn(CO)^(VI)2Br: C, 33.00; H, 6.00; 

Br, 14.67 

Pound: C, 32.92; H, 6.23; Br, 14.81. 

Preparation of 1,2,4-Mn(CO)3(VIII)2*(X = Br, I) 

A solution containing slightly greater than a 2:1 molar 

ratio of (VIII) to manganese pentacarbonyl was refluxed in 

30 ml. of hexane for 6 hrs. On cooling to -20® the product 
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precipitated and was used without further purification. The 

carbonyl stretching frequencies observed in chloroform were at 

1890 (s), 1976 (s), 2058(w)cm7^ and at 1942 (s), 1965 (s), 2045 (w) 

cm7^ for X = Br and I, respectively. 

Analyses: Calc'd for Mn(CO)^(VIII)jBr: C, 23.17; H, 

3.86; Br, 17.10. 

Pound: C, 23.29; H, 4.06; Br, 17.27. 

Calc'd for Mn(C0)3(VIII)2l: C, 21.03; H, 

3.53; I, 24.69. 

Found: C, 21.20; H, 3.64; I, 24.89. 

Preparation of 1,2,3-Mn(CO)^(VIII)2Br 

A solution of 0.55 gm. (2.0 mmoles) of manganese penta-

carbonyl bromide and 0.5 gm. (4.0 mmoles) of (VIII) in 30 ml. 

of pentane was refluxed for 4 hrs. On cooling to -20* crystals 

of the desired product formed. The carbonyl stretching 

frequencies observed in chloroform were at 1927(s), 1976(s), 

and 2041(s)cm. 

Analysis: Calc'd for Mn(CO)^(VIII)jBr; C, 23.17; H, 

3.86; Br, 17.10. 

Found: C, 23.39; H, 3.98; Br, 17.20. 

Preparation of 1,2,3-Mn(CO)^(IXC)gBr 

A solution of 0.55 gm. (2.0 mmoles) of manganese penta-

carbonyl bromide and 0.75 gm. (4.3 mmoles) of (IXC) in 30 ml. 

of benzene was heated to 40* for 6 hrs. On addition of pentane 
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and cooling to 0° the product precipitated and was used without 

further purification. The carbonyl stretching frequencies 

observed in chloroform were at 1946(s), 2000 (s) and 2061(s)cm7^. 

Analysis; Calc'd for MnfCOlgflXClgBr: C, 35.72; H, 4.55; 

Br, 14.01. 

Found: C ,  35.94; H, 4.61; Br, 14,08. 

Preparation of l,2,4-Mn(CO)^(IXC)2Br 

A solution of 0.55 gm. (2.0 mmoles) of manganese penta-

carbonyl bromide and 0.75 gm. (4.3 mmoles) of (IXC) in 30 ml. 

of benzene was heated to 60® for 12 hrs. On addition of 

pentane and cooling to 0® the product precipitated and was used 

without further purification. The carbonyl stretching fre­

quencies observed in chloroform were at 1953 (s), 2000(s), and 

2075(w)cm7^. 

Analysis: Calc'd for Mn(CO)^(IXC)2Br: C, 35.72; H, 4.55; 

Br, 14.01. 

Found: C, 35.90; H, 4.58; Br, 14.05. 

Attempted Preparations 

Because of the difficulties encountered in these attempted 

preparations the products were not characterized further. 

pdclg(vb)2 

To a solution of 0.38 gm. (1.0 mmoles) of dichlorobis-

(benzonitrile)palladium in 20 ml. of benzene was added a 
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solution of 0.5 gm, (2.0 mmoles) of (VB) in 10 ml. of benzene. 

A precipitate formed immediately. Attempts to dissolve the 

solid in various solvents failed and therefore it is believed 

to be polymeric. 

PdClg(IV)2 

To a solution of 0.38 gm. (1.0 mmoles) of dichlorobis-

(benzonitrile)palladium in 30 ml. of benzene was added 0.35 gm. 

(2.0 mmoles) of (IV). An orange solution resulted from which 

a yellowish-orange precipitate formed on the addition of 

pentane. This compound spontaneously decomposed. 

Fe (CO) 3 (VA) 2 

A solution of 1.0 gm. (5.1 mmoles) of iron pentacarbonyl 

and 2.0 gm. (10.2 mmoles) of (VA) in 125 ml. of toluene was 

irradiated with ultraviolet light (Hanovia lamp 654-AlO) for 

36 hrs. The solution was concentrated by removal of some of 

the solvent under reduced pressure, filtered, and pentane added 

to the filtrate. On cooling to -20® a precipitate formed which 

was found to be the ligand (VA). 

Mo(CO)4[(CH3)2NPCI2]2 

The ligand, dichloro-N,N-dimethylaminophosphine was 

prepared by the method of Burg and Slota (74). A solution of 

2.0 gm. (7.5 mmoles) of molybdenum hexacarbonyl and 2.2 gm. 

(15.0 mmoles) of (CH3)2NPCl2 was refluxed in 40 ml. of hexane 
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for 36 hrs. On removal of the solvent under reduced pressure 

a solid was obtained that fumed in air and decomposed under 

vacuum. 

crfcoi^EtCHglgNPClglg 

A solution of 2.2 gm. (10.0 mmoles) of chromium hexa-

carbonyl and 2.8 gm. (20.0 mmoles) of (CHgigNPClg was refluxed 

in 40 ml. of heptane for 30 hrs. A black precipitate formed. 

Addition of water gave a green aqueous solution indicating that 

Cr*^ probably had formed. 

PdClgtfCHglgNPClglg 

.To a suspension of 0.89 gm. (2.3 mmoles) of dichlorobis-

(benzonitrile)palladium in 70 ml. of diethyl ether was added 

0.88 gm. (6.0 mmoles) of (CHg)2NPCl2. A yellow precipitate 

immediately formed. Attempts to dissolve the solid in various 

solvents failed indicating that a polymer probably had formed. 

Trans-Mo(CO)4(VB)2 

Refluxing cis-Mo(CO)^(VB)^ in toluene for 24 hrs. in an 

attempt to isomerize it to the trans compound gave only the 

starting material. Refluxing cis-Mo (CO)^(VB)^ in diglyme 

decomposed the compound. 
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RESULTS AND DISCUSSION 

Manganese Complexes 

Although a number of mangenese complexes of the types 

MntCOl^LX and MhfCOlgLgX (L = (VI), (VIII), (IX); X = Cl, Br, 

I) were prepared, few n.m.r. spectra suitable for analysis by 

computer simulation could be obtained. This was due to the 

instability of the Mn^^ compounds to oxidation resulting in 

+2 traces of paramagnetic impurities (probably Mn ). Even when 

precautions were taken such as degassing the solvent with 

nitrogen prior to running the reaction, keeping the reaction 

mixture under nitrogen at all times, filtering under nitrogen, 

condensing benzene onto the sample in an n.m.r. tube under 

vacuum and sealing the n.m.r. tube under vacuum, paramagnetic 

impurities still formed which broadened the lines in the n.m.r. 

spectrum. It was also found that the more polar the solvent 

used to dissolve the sample, the more rapidly impurities formed. 

Some interesting properties of these manganese compounds 

were observed. Angelici and Basolo have studied the kinetics 

of the substitution reactions of manganese pentacarbonyl halides 

with various phosphorus ligands (75-77). They had shown that 

substitution of the carbonyl trans to the halide did not occur 

and that cis-Mn(CO)^LX formed first followed by the formation 

of 1,2,3-Mn(CO)2L2X which could be isomerized at higher temper­

atures to 1,2,4-Mn(CO)2L2X. In contrast to their work, we have 

found for the reaction of Mn(CO)gBr with (VI) that with varying 
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reaction times Mn(CO)^(VI)Br formed followed by the appearance 

of 1,2,4-Mn(CO)2(VI)2Br without any indication of the presence 

of l,2,3-Mn(CO)2(VI)2Br. This could be attributed to a steric 

effect due to the bulkiness of the ligand (70). 

Another unusual property is the relative solubility of a 

complex with the bicyclic phosphite (IXA) compared to the 

analogous complex with the open chain phosphite (VIII). Thus 

l,2,3-Mn(CO)2(IXA)2Br precipitated out of a chloroform solution 

at 40° whereas it was often difficult to precipitate 1,2,3-

Mn(CO)2(VIII)2Br out of a pentane solution at -20°. 

Stereochemistry 

Two unusual sterochemical properties of the molybdenum 

complexes were observed. One of these was with the ligands 

(VI) and (VII). King had been unable to prepare any cis com­

plexes with (VI) (70). He had reacted molybdenum(norbornadiene)-

tetracarbonyl and molybdenum(cycloheptatriene)tricarbonyl with 

(VI) and in both cases obtained trans-Mo(CO)^(VI)2 instead of 

the expected complexes cis-Mo(CO)^(VI)^ and fac-Mo(CO)^(VI)^• 

He attributed the reluctance of (VI) to occupy cis positions to 

the bulk of the ligand. Although we have been able to prepare 

cis-Mo(CO)^(VI)2 we have found that it isomerizes to the trans 

isomer in bengene solution at room temperature in 30 min. In 

contrast, the ligand (VII) which should be similar to (VI) in 

chemical properties and almost as bulky readily forms cis-

Mo(CO)^(VII)2' Moreover cis-Mo(CO)^(VII)g could not be 
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isomer!zed to trans-Mo(CO)^(VII)^ by refluxing it for 24 hrs. 

in a toluene solution. Complexes of (VI) show other unusual 

properties which will be discussed later and it is possible 

that the bulk of (VI) is not the only reason for its reluctance 

to form cis complexes. 

The other unusual stereochemical property observed occurred 

with the ligands (V) and (IX). With the bicyclic phosphites, 

the configuration of the complexes depended on the length of 

the alkyl chain in the 4 position. With (IXA) or (IXB) only 

the cis complexes could be obtained. With (IXC) a mixture of 

cis and trans-Mo(CO)^(IXC)^ formed whereas the reaction of 

molybdenum(norbornadiene)tetracarbonyl with (IXD) at 25° gave 

only the trans isomer. The bicyclic thiophosphites on the 

other hand gave only cis complexes. Attempts to isomerize cis-

Mo(C0)^(VB)2 to the trans isomer by refluxing in toluene for 

24 hrs. failed. It would appear that both steric and electronic 

effects determine the geometry of these complexes. With the 

bicyclic phosphites, steric effects appear to favor the trans 

isomer as the alkyl chain increases from methyl to pentyl. 

With the bicyclic thiophosphites, however, electronic effects 

of obscure origin must dominate the steric factor since the 

trans isomers of these ligands could not be prepared. 
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N.M.R. Line Shapes and Computer Simulation 

It has been found that if the coupling constants can be 

obtained by a method other than that of computer simulation of 

the envelope of overlapping lines, more accurate values are 

obtained. Anomalous line shapes in n.m.r. spectra can arise 

from a number of causes. The presence of paramagnetic im­

purities, as seemed to be the case with most manganese com­

plexes, will cause a broadening of the lines. Although the 

line shape can be simulated for these cases it is doubtful that 

the coupling constants so derived have any significance. 

Broadening of lines can also result from intermolecular 

exchange. Fackler et (78) have discussed this problem for 

the X^AA'X'^ system. They have shown that a broad apparent 

triplet, a singlet or a doublet can result depending on the 

rate of exchange. Examples of this phenomenon were observed in 

this work with HglgCVIig in which a broad singlet was observed 

and probably with PdlgfVIIIig" 

Difficulties in obtaining good line shapes can also arise 

from the instrumentation used. This is illustrated in Figures 

5 and 6 with the n.m.r. spectra of cis-W(CO)^(I)^ obtained 

on a Varian A-60 and an HR-60 spectrometer, respectively. The 

A-60 spectrum was obtained at a sweep rate of 0.1 Hz./sec. 

which is the slowest attainable with this instrument while the 

sweep rate used for the HR-60 spectrum was 0.023 Hz./sec. It 

is readily observed that the resolution of the A-60 spectro­

meter is not as good as that of the HR-60. More significantly. 
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Figure 5. N.M.R. spectrum of cis-W(CO)^ (I)^ obtained on a Varian A-60 spectrometer 

at a sweep rate of 0.1 Hz./sec. 
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Figure 6. N.M.R. spectrum of cis-W(CO)^(I)^ obtained on a Varian HR-60 spectrometer 

at a sweep rate of 0.023 Hz./sec. 
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ringing is observed for the intense lines in the spectrum 

obtained on the A-60. This means that the line shape is not 

truly Lorentzian since the ideally slow passage is not obtained. 

Thus the observed widths of these lines at half-height are 

smaller than the actual widths. Using these observed widths to 

calculate by computer simulation leads to values that are. 

greater than the true values by 5 to 10%. 

The above causes.for anomalous line shapes generally can 

be readily detected and their origins determined. Other 

anomalies in the line shapes are not so readily explained. In 

Figure 7 is a comparison of the experimental and calculated 

spectra for cis-Mo(CO)^(VIII)Although the width at half-

height of the intense doublet is small in the experimental 

spectrum, the central lines are broad and lacking in resolution 
» 

regardless of the instrument used to obtain the spectrum. 

Straightforward spectral calculations assuming uniform line 

widths do not account for the observed band shapes. Finer 

et al. (79) have observed this phenomenon with other compounds 

and have postulated a number of reasons for this phenomenon. 

Hindered internal rotation could cause variations in line width 

but in this case the n.m.r. spectrum would be temperature 

dependent. Due to a lack of time, temperature studies were not 

carried out on cis-Mo(CO)^(VIII)^ or on the other compounds in 

which we noticed this phenomenon but Finer et al. did do tem­

perature studies with their compounds and found that the spectra 

were temperature independent,. Small non-zero XX' coupling would 
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Figure 7. Comparison of experimental and calculated spectra 

for cis-Mo(CO)^(VIII)2 using ^Jpp = 40 Hz 
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cause the inner lines to be broadened but it can be assumed 

for cis-Mo(CO)^(VIII)2 that such coupling is negligible since 

even in cis-Mo (CO)^ (VIII) (IXB) is zero. Thus it is un­

likely that there is any XX' coupling through eight bonds in 

cis-Mo(CO)^(VIII)2. It is highly probable that quadrupolar 

broadening would account for this effect except that variations 

in line widths are known for cases in which no quadrupolar 

nuclei are present. Two of their postulates that seem most 

likely to account for the poor resolution of the central lines 

are that in theory each transition can have its own transverse 

relaxation time T2(80) and that off-diagonal elements of the 

relaxation matrix can cause overlapping lines to give band 

shapes which are not simply sums of Lorentzian lines (80). 

A totally different phenomenon was observed for all the 

complexes of (VI). In the above cases the energies of the 

transitions were similar to those calculated in spite of the 

anomalous line shapes. In complexes of (VI), however, the 

energies of transition are not the same as those calculated. 

The result of this is that the values of obtained by 

curve fitting are much larger than those obtained by the obser­

vation of the outer lines or by double resonance techniques. 

This is illustrated in Figure 8 which is a comparison of the 

experimental and calculated spectra for trans-Fe(CO)^(VI)^ 

2 using a value of Jpp of 65 Hz obtained by double resonance 

2 
techniques. A value of 320 Hz for Jpp is required to simulate 
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Figure 8. Comparison of experimental and calculated n.m.r. 

spectra for trans FefCOlgfVIlg using ^Jpp = 65 Hz 
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2 
the observed spectrum. Values as high as 4500 Hz for Jpp in 

trar^-PdClj(VI)2 were needed to simulate the observed spectra. 

2 
For cis-Mo(CO)^(VI)2 a value of 90 Hz was calculated for Jpp 

whereas a value of 12.4 Hz was obtained from the observation 

of the outer lines. In contrast, very good agreement was 

obtained between the calculated (20 Hz) and observed value 

(18.2 Hz) for 2jpp in the similar complex cis-Mo(CO)^(VII)^. 

Moreover the proton n.m.r. spectrum of trans-Fe(CO)^(VI)^ 

is temperature dependent and it is probable that the spectra 

of all the complexes of (VI) would show a similar temperature 

dependence. The proton n.m.r. spectra of trans-Fe(CO)^(VI)n at 

-56®, +32®, and +79® are given in Figure 9. As the temperature 

decreases, the central portion becomes broader and the separa­

tion of the doublet increases. This separation which can be 

assigned to is 9.0 Hz at +79®, 9.5 Hz at +32® and 10.0 Hz 

at -56®. For this temperature dependence to be observed, some 

change in the molecule must be occurring during an interval 

which is of the order of n.m.r. detection time (lO"^ sec.). An 

intermolecular exchange can be ruled out because as the temper­

ature is increased, intermolecular exchange would increase 

causing the lines to broaden and not sharpen as is observed. 

Intramolecular exchange between cis- and trans-isomers is un­

likely because the infrared spectrum at room temperature showed 

only one v(CO) absorption at 1876.5 + 1 cm~^. If a cis- trans-

equilibrium were established it should be detected by infrared 
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Figure 9. Proton n.m.r. spectra of trans-Fe(CO)^(VI)n in 

toluene-dg at -56°, +32® and +79®C. 
. O 
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spectroscopy since infrared detection time is of the order of 

lO"^^ sec. This indeed is the case with FefCOlgCXlg which is 

known to undergo intramolecular exchange (81). Moreover the 

isomerization of cis-Mo(CO)^(VI)^ to trans-Mo(CO)^(VI)^ can be 

followed by nuclear magnetic resonance. If an exchange process 

were occurring it is unlikely that this could be done. It is 

possible that there is hindered internal rotation of the phos­

phorus substituents in the ligand. If this were the case, the 

rotation should stop upon sufficient cooling (perhaps below 

-56®) and the methyl groups should then become non-equivalent. 

Because of this, splitting of each line separated by N should 

be observed and it is probable that two apparent triplets would 

result. Moss and Shaw (82) have observed a similar effect in 

trans-NiBr(0-tolyl)[P(CgHg)(05^)2] in which the phosphine-

methyl resonances at room temperature consist of two well-

defined 1:2:1 triplets showing that the two methyl groups on 

the same phosphine ligand differ considerably in their time-

averaged magnetic environments. If hindered rotation occurs, 

2 
however, it seems unusual that the value of Jpp obtained by 

computer simulation compared so well with the observed from the 

separation of the x = 1 outer and inner lines in the spectrum 

of cis-Mo(CO) ̂(VII)o. 

It should be noted that since the inner lines show a 

temperature dependence, it is probable that the outer lines of 

weak intensity also are temperature dependent. Therefore any 

value obtained for Jpp from observation of these outer lines 
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or from double resonance methods may only be appropriate for 

the temperature at which they were obtained. Because of this, 

2 the comparison discussed later of Jpp values for complexes of 

2 (VI) with Jpp values for other complexes which are believed 

to be temperature independent may not be valid. 

Fluorine Spectra 

The n.m.r. data other than phosphorus-phosphorus coupling 

constants for the complexes of (X) are given in Table 2. 

19 
Although the changes in the F chemical shifts among the com­

plexes of the same metal are relatively small, a consistent 

decrease in shielding is observed in all cases from mono to 

trans to cis. Because of the subtle factors capable of 

affecting such small changes in the dominant paramagnetic con-

19 
tribution to F shielding (34), it is presently not possible 

to interpret this trend. 

19 
While the F spectra of the mono-substituted complexes 

are characterized by a simple doublet due to P-F coupling, the 

general appearance of all the spectra of the disubstituted 

metal carbonyls is illustrated for the case of cis-W(CO)^(X)2 

in Figure 10. In all the complexes of (X) , L >> J^, so that 

the coupling constants can be calculated from the % = 1 lines. 

In many of the complexes, long-range fluorine-fluorine couplings 

were observed but the quartets could not be resolved suffi­

ciently to calculate *Jpp. Thus we can set an upper limit to 

4 
Jpp in these complexes of 1 Hz. 
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Table 2. Fluorine n.m.r. data of complexes of (X) 

Compound ôF(p.p.m.)^ \p(Hz) 

CrtCOlgfX) 2.06 1315 

cis-Cr(CO)4(X)% -0.09 +1306 + 1.5 

trans-Cr(CO)^(X)^ 1.28 

Mo (CO) g (X) 4.70 1310 

cis-Mo(CO)4 (X) 2 3.03 +1306 + 2.5 

trans-Mo(CO)^(X)^ 3.99 +1320 +37 

W(C0)5(X)b 7.89 1245 31 

cis-W(CO) ̂(X)^ 5.96 +1281 + 1.5 30 

trans-W(CO),(X)„ 6.97 +1286 +39 32 

Fe (CO) 4 (X) 6.22 1329 

Fe (CO) 3 (X) 2 5.59 +1322 +26 

Ni (CO) 2 (X) 2 18.87 +1357 +34.5 

l,2,3-HMn(C0)2(X) ̂  +1304.5 + 1.5 

1,2,4-HMn(C0)3(X)^ +1311 +%7.5 

^Chemical shifts of neat samples or cyclohexane solutions 
relative to CFClg. 

= 485 Hz. 

°^Jhf = 10.0 Hz. 

d3 4 
Jgp = 12.0 Hz; JpF = 3.0 + 0.3 Hz. 
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Figure 10. Fluorine n.m.r. spectrum of cis-W(CO)^(X)^ obtained on a Varian HR-60 

spectrometer at 56.4 MHz 
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1 3 
Although only the relative signs of Jpp and Jpp could 

19 be calculated directly from the F spectra, it is probable 

that ^Jpp is negative (83). An interesting result is the 

large difference in ^Jpp between the cis and trans compounds. 

The magnitude of ^Jpp in the trans compounds is always larger 

than in the cis compounds. This shall be contrasted with the 

2 values of Jpp later in our discussion. 

183 19 In the tungsten complexes W- F couplings of approxi­

mately 30 Hz were observed. To our knowledge these are the first 

2 values of J^ reported. An attempt to determine the signs of 

12 1 
J^ and J^ relative to Jpp in W(CO)g(X) by double resonance 

INDOR techniques was unsuccessful because of the difficulty in 

matching the impedance of the frequency synthesizer at 2.47 MHz 

to the probe which must also have an input of 56.4 MHz. More­

over the frequency synthesizer did not generate sufficient power 

183 1 2 
to irradiate W. The relative signs of J^ and J^ however 

were found to be the same. 

Proton Spectra 

The n.m.r. data other than phosphorus-phosphorus coupling 

constants for compounds of (I) through (IX) are given in Tables 

3-10. In general the chemical shifts of the protons on the 

carbons nearest to the phosphorus atom follow the trend 

L(ligand) < Cr, Mo and W complexes of L < Pd and Pt complexes 

of L<S=L<0=L. It is conceivable that the increased 

deshielding of these protons is a result of the increase in 

electronegativity of the metal moiety and the dominance of this 
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Table 3. Proton n.m.r, data of compounds of (I) 

Compound N(Hz) ^Jpy(Hz) 5H(p.p.m.)^ Solvent 

(I)b +2.7 + 0.1 0.89 neat 

cis-Cr(00)4(1)2 -6.9 + 0.1 -7.1 + 0.2 +0.2 + 0.2 0.99 
^6^6 

trans-Cr(CO)^ (I)^ -7.4 + 0.1 -7.7 + 0.2 +0.3 + 0.2 1.18 C6«6 

cis-Mo(CO)4 (I)2 -6.3 + 0.1 - 6 . 6  + 0.2 +0.3 + 0.2 0.99 
^6^6 

cis-W(CO) ̂(I)o^ -7.09 + 0.02 -7.34 + 0.05 +0.25 + 0.05 1.08 ^6^6 

cis-PdCl^d)^^ 10.6 +11.7 +1.1 1.73 CHgCl 

trans-Pdl^(I)^ -7.0 + 0.1 

0
 

0
 

rH 1
 + 0.2 +3.0 + 0.2 1.85 CDCI3 

0
 

II H
 (D

 

13.4 1.93 D2O 

H
 

II to 

-13.0 + 0.1 1.74 neat 

^Downfield from tetramethylsilane. 

^Values from reference 84. 

= ± 209.8 Hz; = + 1.9 Hz. 

Values from reference 85. 

^Values from reference 86. 
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Table 4. Proton n.m.r. data of compounds of (II) 

Compound N or 2jpg.(Hz)* ÔH(p.p.m. )^ Solvent 

(II) 8.0 4.30 CCI4 

cis-PdCl^(II)^ 0 4.70 CH3CN 

trans-PdClo(II)^ 0 4.70 CH2CI2 

0=(II)C 7.3 4.40 CDCI3 

S=(II)° 5.6 4.49 (CHgigCO 

^ = ^Jpjj + *JpQ for the palladium complexes; N = ^Jpjj for 

the other compounds. 

Chemical shifts of the methylene protons downfield from 
tetramethylsilane. The chemical shifts of the methyl proton 
(ça. 1.3 p.p.m.) are not given. 

^Values from reference 55. 

Table 5. Proton n.m.r. data of compounds of (III) 

Compound N or ^Jpjj(Hz)^ 6H(p.p.m.)^ Solvent 

(III) 6.1 3.78 CCI4 

cis-Mo(C0)4(III)2 0 3.38 <6^6 

trans-PdCl^(III)^ 0 4.14 CH2CI2 

trans-PdIo(III)^ 0 3.77 <6*6 

= ^Jpjj + *Jpy for the complexes; N = ^Jpg for (III). 

^Downfield from tetramethylsilane. 
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Table 6. Proton n.m.r. data of compounds of (IV) 

Compound ^Jpjj(Hz) 6H(p.p.m.)^ Solvent 

(IV) 10.0 2.26 CDCI3 

trans-Cr(CO)^(IV)^ 15.7 2.40 CDCI3 

cis-Mo (CO) 4 (IV) 2 15.5 2.03 ^6*6 

cis-W(CO)4(IV)2 15.7 2.38 CH2CI2 

^Downfield from tetramethylsilane. 

Table 7. Proton n.m.r. data of compounds of (V) 

Compound ^Jpg(Hz) 6H(p.p.m. )^ Solvent 

(VA) 2.1 2.87 CH2CI2 

cis-Cr (CO) 4 (VA) 2 3.5 3.15 CH2CI2 

trans-Cr(CO)^(VB)^ 3.5 3.10 CDCI3 

cis-Mo(CO)^(VA)^ 3.1 3.05 CDCI3 

cis-W(CO) ̂(VA)^ 3.5 3.11 CDCI3 

0= (VA) ̂ 11.6 3.38 C5H5N 

S= (VA) b 10.0 3.32 C5H5N 

^Chemical shifts of the methylene protons. The chemical 
shifts of the alkyl chains (ca. 1 p.p.m.) are not given. 

^Values from reference 58. 
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Table 8. Proton n.iti.r. data of compounds of (VI) and (VII) 

Compound ^Jpjj(Hz)^ ôH(p.p.m.) Solvent 

(VI) +8.8 + 0.1° 2.42, neat 
(VII) 2.8 2.67* CDCI3 

trans-Cr(CO)^(VI)^ +9.84 + 0.02 2.65 ^6^6 

l,2,4-Mn(CO)3(VI)2Cl 9.2 2.70 ^6^6 

l,2,4-Mn(C0)2(VI)2Br 9.2 2.70 

cis-Mo(CO)4(VI)2 10.9 2.60 =6^6 

cis-Mo(CO)^(VII)o 9.2 

o
 
H
 

m
 CDCI3 

trans-Mo(CO)^(VI)^ +10.2 +0.1 2.67 C6»6 

trans-W(CO)^(VI)^ +10.4 + 0.1 2.56 ^6^6 

trans-Pe(CO)^(VI)^ +9.6 + 0.1 2.67 =6*6 

Ni(CO)2(VI)2 9.3 2.47 =6^6 

cis-PdCl^(VI)2 9.7 2.63 =6*6 

trans-PdCl^(VI)o 10.1 2.77 ^6^6 

trans-Pdl^(VI)^ 10.3 2.40 C6«6 

cis-PtCl^(VI)2 9.4 2.78 CH2CI2 

trans-PtCl^(VI)^ 10.1 2.83 CH2CI2 

trans-Ptl^(VI)^ 10.0 2.81 CH2CI2 

0=(VI) +9.30 + 0.03° 2.62 neat 

S= (VI)® 11.0 2.62 

Values obtained at the ambient temperature of the probe 
(ça. 30°). 

^Downfield from tetramethylsilane. 

®Value from reference 54. 

^Chemical shift of the methyl protons. The chemical shifts 
of the phenyl proton were ca. 7.1 p.p.m. 

^Values from reference 87. The solvent used (if any) was 
not given. 
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Table 9, Proton n.m.r. data of compounds of (VIII) 

Compound ôH(p.p.m. ) Solvent 

(Vlll)b +10.0 + 0. 1 3.69 neat 

1,2,3-Mn(CO)3(VIII)gBr 10.4 3.50 =6^6 

1,2,4-Mn(CO)3(VIII)^I 10.7 3.51 C6»6 

cis-Mo(CO)4(VIII)2 +11.6 + 0. 1 3.68 CDCI3 

trans-Mo(CO)^(VIII)^ +11.6 + 0. 1 3.65 CDCI3 

cis-PdCl^(VIII)2 +12.9 + 0. 2 3.89 CDCI3 

Pdl2(VIII)2° broad 3.45 ^6^6 

cis-PtClg(VIII)2^ 12.7 3.88 CDCI3 

cis-Ptlo(VIII)^^ 12.9 3.82 CH2CI2 

0=(VIII)b +10.5 + 0. 1 3.46 neat 

S=(VIII)f +12.9 + 0. 1 neat 

Downfield from tetramethylsilane. 

Values from reference 84. 

Although cis in the solid state, the compound appears to 
be a cis-trans mixture in solution. 

d4 
JptH =2.5 Hz. 

e4 
JptH - 2.2 Hz. 

'"Value from reference 84; the proton chemical shift was 
not reported. 
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Table 10. Proton n.m.r. data of compounds of (IX) 

Compound SjpgXHZ) ôH(p.p.m.)^ Solvent 

(IXA) 2.00 3.93 CDCI3 

cis-Cr(CO) ̂(IXA)o 4.65 4.23 (CH3)2C0 

trans-Cr(CO)^(IXB) 
2 4.11 4.29 (CHglgCO 

l,2,3-Mn(CO)3(IXC) 2®^ 4.7 4.30 CHCI3 

cis-Mo(CO)4(IXC)2 4.30 4.21 (CH3)gCO 

trans-Mo(CO)^(IXC) 
2 4.20 4.28 (CH3)2C0 

cis •W(CO)4(IXC)2 4.50 4.23 (CH3)2C0 

trans-W(CO)^(IXC)^ 4.40 4.17 CDCI3 

trans-Fe(CO)^(IXB) 
2 4.92 4.35 (CH3)gCO 

trans-Pdl^(IXD)^ 4.37 CH2CI2 

cis-PdCl^(IXD)^ 5.50 4.42 CHgClg 

cis-Ptl^(IXD)2 5.70 4.42 CH2CI2 

cis-ptCU(IXD)^ 5.65 4.47 DMSO 

Ni (CO) 2 (IXA) 2 4.00 4.10 CDCI3 

0=(IXA)G 6.00 4.48 CH3CN 

S=(IXA)C 7.00 4.48 CH3CN 

Chemical shifts of the methylene protons downfield from 
tetramethylsilane. The chemical shifts of the alkyl chains 
(ça. 1 p.p.m.) are not given. 

^Poor resolution of the apparent triplet did not permit 
the accurate determination of 

^Values from reference 88. 
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effect over any tendency toward back donation from the metal. 

The presence of several discrepancies in this trend, however, 

admits of the possibility of one or more subtle influences 

which at times may override the .inductive effect. Moreover the 

use of different solvents may cause minor variations in the 

chemical shifts. 

3 
The general trend of the AX coupling constants ^pocH 

^JpjjCH more electronegative groups are bound to the fourth 

site on phosphorus is toward increased frequency. McFarlane 

3 
(84) has shown that JpocH positive in (VIII), and the oxide 

3 
and sulfide of (VIII). Although the signs of JpocH deriva-

3 
tives of (IX) have not been determined, the values of JpocH 

in analogous bicyclic compounds XP(OCH2)3PY (X = e pair, 0,5; 

Y = e pair, O) have been shown to be positive and follow a 

trend similar to that of derivatives of (VIII) (54). It is 

therefore likely that JpocH derivatives of (IX) are posi­

tive. It has also been shown that (VI) and its 

quinquivalent derivatives is positive (54). In trialkyl phos-

2 
phines, Jp^jj is positive (84, 89) or slightly negative (84) 

but it changes to negative in quinquivalent species such as 

0=(I) and S=(I) (84). Cullingworth et (90) have shown 

2 
that Jpjj in (I) reverses sign in forming complexes with organo-

aluminum compounds and Boros et al. (55) have presented evidence 

that the same phenomenon occurs when (II) is co-ordinated to a 

variety of acceptors. The sign determinations in the transition 
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metal complexes reported here is the first definitive proof 

2 that Jpjj in (I) changes from positive to negative upon co­

ordination. 

It has also been found that there is AX' coupling in 

disubstituted complexes of (I). From the separation of the 

X = 1 and X = 2 inner lines in cis-W(CO)^(I)^ (see Figure 6) it 

was possible to estimate and using Equations 12 and 

13 (49). 

|J^, I = [3S^(1) + S^(2)][S^(1) - S^(2)]/2[3S^(1) - S^(2)] 12 

= [S^(l)] [S^(2)] [S^(l) + S^(2)]/[3S^(1) - S^(2)] 13 

Using these equations and the value of N = 7.09 Hz, the fol­

lowing coupling constants were calculated: = 22.9 Hz, 

= + 7.22 Hz and = + 0.13 Hz. The value of from 

the separation of the x = 1 inner and outer lines was 25.0 Hz. 

The values obtained from. Equations 12 and 13 are rather im­

precise since a change of 0.01 Hz in S^(l) or S^(2) changes 

•^AA' ca. 3 Hz. Using 25.0 Hz for the value of , the 

computer program given in the Appendix gave values of = 

-7.34 + 0.05 and = + 0.25 + 0.05 Hz. The values of 

and in the other complexes given in Table 3 were also 

obtained using the computer program. It is interesting that the 

values of J^, in the palladium complexes is much larger 

than in the Group VI complexes and also that is larger in 
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the trans complexes than in the cis analogs. 

An attempt to correlate the chemical shifts of the protons 

3 
and the values of in the complexes of (IXA) was of inter­

est in view of the apparent linear correlations of these 

parameters in Y(IXA) where Y = e~ pair, B^CHg)^, BHg, CHgCHg*, 

and (CgHg)C^ (59). The plot in Figure 11 shows these correla­

tions for the 3 and y protons for the boron and carbon acceptor 

systems as solid lines and the new apparent linear correlations 

for some monosubstituted carbonyl complexes of (IXA) are shown 

as dashed lines. Although the monosubstituted carbonyl deriva­

tives were chosen because of the better comparison of an 

M(CO)n than an M(CO)^_^L acceptor to systems like BR^ and , 

the disubstituted derivatives also cluster on the dashed lines. 

Previously (59) it was noticed that the chalcogenides of (IXA) 

did not fall near the line generated by the BRg and R^ adducts. 

These adducts, which fall on the solid lines, form single bonds 

with phosphorus whereas the chalcogenides form double bonds. 

The fact that there is a linear correlation of the transition 

metal complexes and the chalcogenides would seem to indicate 

that there is some degree of double bond character in the phos-

phorus-metal bond. The solid line correlations were obtained 

from the n.m.r. spectra taken in CD^CN whereas the dashed line 

correlations were obtained using (08^)200, DMSO, CDCl^ and 

CHgClg solutions because of solubility considerations. The 

observations are believed to be valid in spite of the variation 
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Figure 11. Correlation of proton chemical shifts with ^Jpjj in derivatives of (IXA) 
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in solvents because the ligand shows only minor variations in 

its proton chemical shift in these solvents. 

Mixed Ligand Complexes 

Complexes containing two different phosphorus ligands are 

31 31 useful in that P- P coupling constants can be obtained 

directly from the ^^P spectrum since the phosphorus atoms are 

chemically non-equivalent. Prior to this, few bis-monodentate 

mixed ligand complexes have been prepared (91) because the 

synthesis of the desired complex is complicated by the forma­

tion of all other possible complexes. 

31 31 
The n.m.r. data other than the P- P coupling values are 

given in Table 11. The proton n.m.r. spectra of the cis-molyb-

denum complexes and trans-Mo(CO)^(VIII)(IXB) consist of two 

doublets (excluding the CgHg proton resonances) whose intensity 

ratio allowed their unique assignment to the OCHg, N(CH2)2 or 

OCHg groups each coupled over three bonds to a phosphorus atom. 

Although similar assignments could be made for the OCHg and 

N(CH2)2 proton resonances in the remaining two trans complexes, 

the doublets were significantly perturbed as shown in Figure 12. 

The reason for the simple and perturbed doublets in the 

n.m.r. traces of these compounds became clear upon observa­

tion of the ^^P resonance absorptions. The two cis compounds 

exhibited simple AX patterns consisting of two doublets 

3 31 
(broadened by Jpjj coupling) in the P region whereas the 
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Table 11. N.M.R. data for mixed ligand complexes 

Complex Ligand g31pC 

(p.p.m.) (Hz) (p.p.m.) 

cis-Mo(CO)g(VIII)(IXB) (VIII) 3. 61 11. 7 -164. 3 

(IXB) 4. 17^ 4. 2 -139. 6 

trans-Mo(CO)^(VIII)(IXB) (VIII) 3. 61 11. 7 -176. 4 

(IXB) 4. 21^ 4. 3 -148. 0 

cis-Mo(CO)^(VI)(IXB) (VI) 2. 60 10. 0 -145. 0 

(IXB) 4. 16^ 4. 2 -138. 0 

trans-Mo(CO)^(VI)(IXB) (VI) 2. 62 10. 2 -153. 7 

(IXB) 4. 22^ 4. 2 -147. 9 

trans-Fe(CO)3(VI)(IXC) (VI) 2. 60 10. 0 -164. 3 

(IXC) 4. 21^ 4. 9 -168. 4 

^Downfield from tetramethylsilane (+ 0.01 p.p.m.). 

0.1 Hz. 

^Downfield from 85% aqueous phosphoric acid (+0.5 p.p.m.). 

^Chemical shift of the methylene protons. The chemical 
shift of the alkyl chain (ca. 1 p.p.m.) is not given. 

trans-Mo(CO)^(VIII)(IXB) although showing some AB character, 

was very nearly an AX spectrum. The spectra of the other 

two trans compounds were distinct AB patterns similarly 

3 broadened by Jpy. The spin classification of the pertinent 
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nuclei in the latter compounds (excluding the 

protons) can be designated M^ABY^ where M and Y are the protons 

in (VI) (m = 18) and (IX) (n = 6) respectively, and A and B 

are the phosphorus nuclei in the aminophosphine and bicyclic 

phosphite. The amount of perturbation in the proton region 

depends on and the difference in chemical shift of the A 

and B nuclei (\)^-\)g) . If J^g << (V^-Vg) then no perturbation 

is observed as is the case in trans-Mo(CO)^(VIII)(IXB). If 

•^AB ^ (v^-Vg) then the perturbation is similar to that observed 

for the other two trans compounds (Figure 12). If >> (V^^-Vg) 

apparent triplets would be produced in the proton n.m.r. spec­

trum. In the two M^ABY^ systems reported here the AB coupling 

2 
( Jpp) results in 2m + 1 pairs of lines in the M region and 

2n + 1 pairs in the Y portion of the spectrum even though 

and Jg^ are zero. Hence the doublets in the proton spectra 

(Figure 12) reveal the envelopes of the 2m + 1 and 2n + 1 lines 

as a perturbation on the doublets. 

The observation that the n.m.r, spectrum of the protons on 

one ligand is not split by the phosphorus atom on the other 

ligand in these mixed ligand complexes is good evidence that 

^Jpjj = 0 not only in these compounds but in complexes of (VI) , 

(VIII) and (IX) in which both ligands are the same. The assump-

5 tion that ( Jp^) was zero was a requirement of the computer 

program in order to solve . Moreover N = so that our 

assignments of ^Jp^ in Tables 6-10 are valid. 
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Figure 12,, Proton n.m.r. spectra (not including chain) 

a. Trans-Fe(CO)3(VI)(IXC) 

b. Trans-Mo(CO)^(VI)(IXB) 
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Phosphorus-Phosphorus Coupling 

31 31 The P- P coupling constants that have been determined 

in this work and most of those that have been determined by 

other authors are given in Tables 12-20. The values for com­

plexes of (VI) are only reported if they were obtained by 

double resonances techniques or by observing the outer lines. 

The values for complexes of (II) and (III) are not reported 

since N = 0 and the apparent triplet was not observed. . 

The repeated observation in a variety of systems (92) that 

trans phosphorus-phosphorus couplings are large and are char­

acterized by apparent triplets in the spectrum while cis coup­

lings are small leaving the doublet unperturbed, has served 

as a criterion for determining the geometrical relationships of 

phosphorus ligands in many complexes. However considerable 

caution should be taken in using the observations of apparent 

triplets to assign the stereochemistry of complexes. Many cis 

complexes have appreciable phosphorus-phosphorus coupling and 

2 from the data available it appears that the magnitudes of Jpp 

in cis and trans manganese complexes are approximately equal 

2 and indeed in chromium complexes the magnitude of Jpp is even 

greater in cis compounds than in trans. Furthermore, weak 

31 31 P- P coupling can lead to apparent triplets when" is 

small. This was observed in cis-Mo(CO)^(VA)2. 

Other than in chromium and manganese compounds, phosphorus-

phosphorus couplings are generally larger in trans compounds 
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31 31 
Table 12. P- P coupling, constants in chromium complexes 

Compound 'jpp (Hz) Method^. 

cis-Cr(CO)^(I)^ -36 + 1 A 

trans-cr(CO)^(I)^ -28.5 + 1 A 

trans-cr(CO)^(IV)^ •vO F 

cis-Cr(CO)^(VA)^ 'v<0 F 

trans-Cr (CO) ̂(VB)^ <^0 F 

trans-Cr(CO)^(VI)^ -17 + 5 C 

cis-cr(CO)^(IXA)^ 70 

o
 

1—
! +
 1 D 

trans•Cr(CO)^(IXB)^ 9 + 3 D 

cis-Cr (CO) 4 (X)^ 78 + 1 B 

trans-Cr(CO)^(X)? 34 + 1 B 

cis-Cr(CO)4(XI)2 -26 jb.c 
b 

A 

cis-Cr(CO)^(XI)(XIX) 33 .0 E 

trans-Cr(CO)^(XIV)(XIX) 25^ E 

trans-Cr(CO)^(XIV)(XXI) 30^ E 

cis-Cr(CO)4(XXIII)2 67 + 1® """ B 

cis-Cr(CO)4(XXV)2 62 ± 2® B 

cis-Cr(CO)4(XXX) 28 .5 + 0. 5® B 

^Methods of obtaining values of ^Jpp are: 

A - separation of % = 1 inner and outer lines in the 
spectrum 

B - separation of % = 1 inner and outer lines in the F 
spectrum 

C - double resonance techniques 
D - computer simulation of the band shape 

31 E - direct observation in the P spectrum 
F - perturbation of main doublet was not observed. 

^Values from reference 93. 

2 ^J. F. Nixon, Brighton, England. Sign determination of 
Jpp in c^-Cr (CO) ̂ (XI) 2» Private communication. 1969. 

*Values from reference 91. 

^Values from reference 94. 
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31 31 
Table 13. P- P coupling constants in molybdenum complexes 

Compound "Jpp (HZ) Method 

çis-Mo (CO) 4 (I) 2 

cis-Mo(CO)^(IV)n 

cis-Mo(CO)4(VA)2 

çis-Mo(CO)4(VI)2 

trans-Mo(CO)^(VI)2 

cis-Mo (CO) ̂ (VII) o 

cis-Mo (CO) ̂ (VIII) ̂ 

trans-Mo (CO) ̂ (VIII) 2 

çis-Mo (CO) 4 (IXC) 2 

trans-Mo (CO) ̂ (IXC) 2 

cis-Mo (CO) 4 (VI) (IXB) 

trans-Mo (CO) ̂ (VI) (IXB) 

cis-Mo(CO)^(VIII)(IXB) 

trans-Mo(CO)^(VIII)(IXB) 

cis-Mo (CO) 4 (X) 2 

trans-Mo (CO)^ (X) 2 

cis-Mo(CO)^(XI)^ 

-29.7 + 0.1 

30 + 10 

35 + 10 

12.4 + 0.2 

18.2 + 0.2 

-40.5+1 

50 + 10 

39 + 3 

48 + 3 

+101 + 1 

55 + 1 

18.3* 

+162 + 5 

210 + 30 

141 + 3 

185 + 3 

312 + 1 

A 

D 

D 

A 

A 

A 

A 

C 

D 

D 

E 

E 

E 

E 

B 

B 

A 

Methods of obtaining values of Jpp are: 

A - separation of x = 1 inner and outer lines in the 
spectrum 

B - separation of x = 1 inner and outer lines in the I 
spectrum 

C - double resonance techniques 
D - computer simulation of the band shape 

31 
E - direct observation in the P spectrum. 

Value from reference 93. 
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Table 13 (Continued) 

trans-Mo(CO)^(XIV)(XIX) 50° E 

cis-Mo(CO)^(XVII)(XIX) 21° E 

trans-Mo(CO)^(XVII)(XIX) 49° E 

trans-Mo(CO)^(XIV)(XXI) 112° E 

cis-Mo(CO)^(XXII)2 42.5 + 0.5^ B 

cis-Mo(CO)^(XXIII)^ -48.0 + 0.5^ B 

cis-Mo (CO) ̂ (XXV) 2 38 + 2^ B 

c^-Mo (CO) ̂ (XXVI) 2 38 + 1*^ B 

cis-Mo(CO)^(XXXIII)^ 49+1^ B 

Cis-Mo(CO)4(XXX) +121® B 

cis-Mo(CO)^(XVIII)2 ~19^ A 

fac-Mo(CO)j(X)3 56.4+1.2® B 

fac-Mo(CO)j(XXIV)J 43+1® B 

fac-Mo(CO)3(XXVIII)3 55.2® B 

fac-Mo(CO)J(XXIX)g 51.0® B 

mer-Mo(CO)^(VIII)^ 47^ E 

mer-Mo(C0)g(XII)3 <15^ E 

mer-Mo(CO)3(XX)3 51^ E 

°Values from reference 91. 

'Values from reference 95. 

®Values from reference 94. 

^Value calculated from spectrum in reference 96. 

^Values from reference 97. 
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31 31 
Table 14. P- P coupling constants in tungsten complexes 

Compound %p (Hz) Method^ 

cis-W(CO)^(I)^ —25.0 + 0.1 A 

cis-W(CO)^(IV)^ 'vo F 

cis-W(CO) 4 (VA) 2 F 

trans-W(CO) ̂(VI)^ +81 + 5 c 
cis-W(CO)^(IXC)n 35 + 5 D 

trans-W(CO)^(IXC)o 140 + 25 D 

cis-W(CO)^(X)o 38 + 1 B 

trans-W(CO)^(X)^ 315 + 1 B 

cis-W(CO)^(XI)o 13.4b A 

trans-W(CO)^(XIV)(XIX) 65° E 

trans-W(CO)^(XIV)(XXI) 120° E 

trans-w(CO)^(XVII)(XXI) 112° E 

cis-W(CO)^(XXII)^ 33 + 1^ 
— d 

B 

cis-W(CO)^(XXIII)^ 38.0 + 0.5* — m B 

cis-W(CO)^(XXV)^ 21 + 1^ 
— fi 

B 

cis W (CO). (XXX) 155.3 + 0.6° B 

a 2 
Methods of obtaining values of are: 

1 A - separation of % = 1 inner and outer lines in the H 
spectrum 19 

B - separation of x = 1 inner and outer lines in the F 
spectrum 

C - double resonance techniques 
D - computer simulation of the band shape 

31 
E - direct observation in the P spectrum 
P - perturbation of main doublet was not observed. 

^Value from reference 93. 

^Values from reference 91. 

Values from reference 94. 
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31 31 
Table 15. P- P coupling constants in manganese complexes 

Compound 
%P 

(Hz) Method^ 

1,2,3-jyin (CO) 3 (VIIIlgBr 140 + 20 D 

1,2,4-Mn (CO) 2 (VIII) 2% 170 + 30 D 

1,2,3-Mn (CO) 3 (IXC) ̂Br 110 + 20 D 

l,2,3-HMn(CO) 3 (X) % 125 + 1 " B 

l,2,4-HMn(CO)3(X)2 155 + 1 B 

Methods of obtaining ^Jpp are: 

B - separation of the x = 1 inner and outer lines in the 
19 F spectrum 

D - computer simulation of the band shape. 

31 31 
Table 16. P- P coupling constants in iron complexes -

Compound ^"^pp (Hz) Method^ 

trans-Fe(CO)3(VI)^ +65 + 10 C 

trans-Fe(CO)3(VI)(IXC) 183 + 1 E 

trans-Fe (CO) 3 (IXB) 300 + 40 D 

Fe (CO) 3 (X) 2^ 98 + 1 B 

Methods of obtaining values of ^Jpp are; 

B - separation of the % = 1 inner and outer lines in the 
19 F spectrum 

C - double resonance techniques 
D - computer simulation of the band shape 

E - direct observation in the ^^P spectrum. 

'^Molecule is undergoing intramolecular exchange. Value 
obtained is a time average of all possible isomers. 
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31 31 
Table 17. P- P coupling constants in rhodium complexes 

Compound (HZ) Method^ 

mer-RhCl^(XIII)2 22 + 3^ E 

mer-RhCl^(XIV)^ 21 + 3^ E 

mer-RhCl^(XVI)^ 30 + 8^ E 

l,2,4-RhCl3(XIV)2(XXI) 30.3° E 

Method of obtaining values of ̂ Jpp is : 

31 E - direct observation in the P spectrum. 

^Values from reference 98. 

^Value from reference 99. 

than in their cis isomers. This appears to be true especially 

with palladium and platinum complexes. Although l^Jppl is not 

always larger in trans compounds than in cis it does appear 

that I JppI in disubstituted complexes of (X) is larger in 

trans complexes than in cis. 

The nature of the metal atom plays a definite role in 

2 determining Jpp» The most intensely studied series with the 

same stereochemistry consists of Group VI complexes. The data 

shows that the order of magnitude for cis couplings is Cr > Mo 

> W. For the trans couplings there appears to be less order 

2 Other than that the Jpp values in. Mo and W complexes are much 

larger than in their Cr analogues. From the few results for 

other groups, it is difficult to observe meaningful trends but 
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31 31 
Table 18. P- P coupling constants in nickel complexes 

Compound ^Jpp(Hz) Method^ 

Ni(CO)2(VI)2 ~0 F 

Ni(CO)2(VIII)2 10+3^ A 

Ni(CO)2(IXA)2 ~0 F 

Ni(CO)2(X)2 38+1 B 

Ni(CO)2(XXV)2 F 

Ni(CO)2(XXVI)2 F 

Ni(CO)2(XXXI)2 F 

Ni (CO) (XXV) 3 'V'0° F 

Ni(X)4 <19° B 

Ni(XXII)4 <15® B 

Ni(XXIII)4 21+5° B 

Ni(XXVII)4 ~15° B 

Ni(XXIX)4 17.7° B 

Ni(XXXIII)4 <10° B 

a. 2 
Methods of obtaining values of Jpp are: 

A - separation of x = 1 inner and outer lines in the 
spectrum ng 

B - separation of x = 1 inner and outer lines in the F 
spectrum 

F - perturbation of main doublet was not observed. 

^Value calculated from the spectrum in reference 100. 

°Values from reference 94. 

^alue from reference 101. 

®Value from reference 102. 
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31 31 
Table 19. P- P coupling constants in palladium complexes 

Compound 2jpp(Hz) Method^ 

cis-PdCl^(I)^ 8% A 

trans-PdI_(I)_ +572 + 5 C 

cis-PdClo(VIII)2 +79.9 + 0.2 A 

cis-PdCln(IXD)2 65 + 10 D 

trans-Pdl^(I)(XII) 565^ E 

trans-Pdl^(XIV)(XV) 551° E 

trans-Pdlo(XIV)(XXI) 758° E 

trans-Pdl^(XV)(XXI) 829° E 

trans-PdClo(XXXII)^ 1100 + 50* D 

Methods of obtaining values of ^Jpp are: 

A - separation of the x = i inner and outer lines in the 

spectrum 
C - double resonance techniques 
D - computer simulation of the band shape 

31 
E - direct observation in the P spectrum, 

^Values from reference 99. 

^Values from reference 85. 

"^alue from reference 103. The value, however, is dubious 
31 1 

since the author neglected the effect of P- H coupling. 

it does appear that couplings in palladium complexes are greater 

than in platinum complexes. 

From the limited data available, the other ligands in a 

2 given complex appear to affect the value of Jpp relatively 
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31 31 
Table 20. P- P coupling constants in platinum complexes 

Compound ^"^pp (8%) Method^ 

F 

D 

F 

D 

D 

Methods of obtaining values of ^Jpp are: 

D - computer simulation of the band shape 
F - perturbation of main doublet was not observed. 

slightly. Compounds in which only the halides are varied sug-

2 gest that Jpp increases in magnitude from I to CI. A similar 

small effect has been observed for ^Jp^p in some platinum com­

plexes (104). 

The most significant factor affecting phosphorus-phosphorus 

coupling is the electronegativity of the substituents on phos­

phorus. In most cases as the electronegativity increases, 

l^JppI increases. The most notable exception to this is in the 

series of trans chromium complexes. 

Up to now we have discussed the various trends considering 

2 only the magnitudes of Jpp* However coupling constants can 

have both negative and positive signs. For most coupling con­

stants between two specified nuclei the sign is dependent only 

on the number of bonds between the nuclei. The observation 

cis-PtClo(VI)^ 'V'O 

cis-PtCl^(VIII)^ 10+2 

cis-PtIo(VIII)o ~0 

cis-PtCU(IXD)o 35 + 10 

cis-PtlgtlXD), 14+5 
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(105) that a sign change in ^Jpjf took place upon altering the 

groups, attached to phosphorus in diphosphorus compounds of the 

type RgPPRg made it of critical importance to determine the 

signs of Jpp in coordination complexes. The signs determined 

for cis compounds of Group VI indicate that all the signs are 

2 negative and that Jpp becomes more negative as the substituents 

on phosphorus become more electronegative. On the other hand 

2 Jpp for trans compounds of Group VI appears to become more 

positive as the electronegativity of the substituents increases. 

The signs of ^Jpp in trai^-Cr(CO)^(I)2 and trans-Cr(CO)^(VI)^, 

however, were also found to be negative. The apparent anomaly 

2 in the magnitudes of Jpp for the trans chromium compounds can 

2 thus be explained by assuming that Jpp goes through zero as 

the electronegativity of the substituents increases. The trends 

that can be formulated by considering both magnitudes and signs 

are illustrated in Figures 13 and 14. The one exception in 

Figure 13 is cis-Mo(CO)^(VI)^« This compound, however, readily 

isomerizes to trans-Mo(CO)^(VI)2 and it is believed that the 

bulk of the ligand has distorted the molecule and that the 

p-Mo-P angle is greater than 90®. In light of the fact that . 

31 31 complexes with tetrahedral symmetry have P- P couplings of 

almost zero and that trans couplings are positive it is not 

unreasonable to expect Jpp in cis-M6(CO)^(VI)^ to be more 

positive than normally would be expected. 
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Figure 13, Variation of Jpp with the electronegativity of 

svibstituents on phosphorus for cis complexes of 
Group VI 
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Figure 14, Variation of Jpp with the. electronegativity of 

substituents on phosphorus for trans complexes of 
Group VI 
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The signs of ^Jpp in both ci^-PdClg(VIII)g and trans-Pdl^ 

(I)2 were found to be positive. Trends can not be constructed 

from the limited data known for the palladium and platinum 

2 
cases but it may be for these metals that the Jpp values for 

both the cis and trans configurations are positive, and become 

more positive as the electronegativity of the substituents on 

phosphorus increases. 

Although signs of coupling constants could not be deter­

mined for complexes containing the bicyclic phosphite ligands, 

it is probable that our assignment in Figures 13 and 14 is 

correct. This conclusion is reached from the data obtained for 

the mixed ligand complexes. It is expected that the values of 

2 Jpp in the mixed ligand complexes should be intermediate in 

value between the values for the two analogous complexes in 

which both ligands are the same. If a sign change between 

complexes of (IX) and (VI) or (VIII) were occurring, the mag-

2 
nitudes of Jpp in the mixed ligand complexes should be less 

2 
than Jpp in complexes in which both ligands are the same. 

Since this does not happen, our assignment is probably correct. 

31 31 Since P- P couplings found in co-ordination compounds 

are transmitted via the metal atom, metal-phosphorus couplings 

2 
might be expected to parallel the trends found for the Jpp 

values. Although there are few metals with suitable nuclei in 

sufficient abundance for such studies, several papers dealing 

with metal-phosphorus couplings have been published (98, 104, 

106-111). Indeed the values of ^Jjjp are dependent upon the 
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substituants on phosphorus and the magnitudes of both and 

^Jptp in tungsten (106) and platinum (109) complexes, respec­

tively, increase as the electronegativity of the substituents 

increase. Grim et al. (110) had ascribed their observed linear 

correlation of with v(CO) in the series W(CO)gL [L = PR^, 

PRgfCgHg), PRfCgHgig, P^CgHg)^] to the increased tt back bonding 

expected from PR^ to P(CgHg)g. Over a larger range of electro­

negativity of substituents, however, the correlation between 

and V (CO) breaks down (106). 

Platinum-phosphorus coupling constants are greatly affected 

by the nature of the ligand trans to the phosphorus atom (104). 

Grim and coworkers (109) had discussed the large platinum-

phosphorus coupling constants in terms of ir-bonding. The con­

cept of using ir-bonding to explain coupling constants has been 

criticized by Schneider and Buckingham (41) who pointed out 

that the large ^^^Pt-^H coupling constants are observed in 

platinum hydride complexes in which there can be no ir-bonding. 

A similar criticism could be made for any explanation using 

31 31 2 
ir-bonding to account for P- P couplings since Jpjj values 

in metal hydride complexes containing phosphorus ligands follow 

2 trends analogous to that observed for the Jpp values (112). 

2 If ir-bonding were a significant factor, Jpp in cis complexes 

would be expected to be highly influenced by ligands trans to 

2 
the phosphorus atoms. The closeness of Jpp in cis-Mo(CO)^ 

(VIII)2 (40 Hz) and in mer-Mo(CO)3(VIII)3 (47 Hz) suggests that 

ir-bonding is of little importance. 
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Pidcock and coworkers (104, 108) have suggested that the 

dependence of on the ligand trans to phosphorus is due 

to an inductive effect. Ligands with a strong a inductive 

character effectively reduce the positive charge on the plati­

num and thus weaken the overlap of the phosphorus and metal 

orlpitals trans to the group in comparison to the case, where 

the phosphorus ligands are trans to one another. Thus in com­

pounds of the type PtXg(983)2 X is a phenyl or silyl 

group, ^Jptp greater in trans compounds than in the cis 

analogs whereas the opposite observations were made on these 

isomers when X is an electronegative group such as a halogen. 

These arguments are based on all coupling constants 

being positive which is likely (113). Inasmuch as a CO group 

is a poorer a inducting group than a phosphine, the observation 

(114) that ^J^gp is larger in trans-W(CO) ̂ (PR^) o than in the 

cis compound would suggest that is negative if :he induc­

tive arguments are correct. 

In valence bond formalism the Fermi contact contribution 

to a coupling constant is dependent mainly upon the effective 

nuclear charges of the two coupling nuclei and the s character 

in the bonds between the nuclei (115). In the series (I), (VI), 

(VIII), (IX), (X) the effective nuclear charge on the phos­

phorus should increase as the electronegativity of the sub-

2 
stituents increases. Thus the magnitude of Jpp should in­

crease because of the effective nuclear charge as more electro­

negative substituents are placed on phosphorus. However, using 
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the arguments of Bent (116) an increase in the s character in 

the metal-phosphorus bond should also result in an increase in 

2 
Jpp. Bent contends that hybridizational changes will occur 

such that s character concentrates in orbitals directed toward 

electropositive substituents. Changes in hybridization might 

reasonably be expected to cause changes in bond angles. Un­

fortunately few crystal structures have been determined on 

metal complexes containing the ligands used in this study. 

However the angles between the substituent atoms in the chal-

cogenide derivatives might reasonably be taken as indicative 

of the trend in metal complexes. In compounds of the type 

XPRgCX = S, Se, or 0) CPC bond angles are between 106® and 108® 

(27). The OPO angle in the oxide of (IXA) is 104® (117) while 

the FPF angles in the oxide and sulfide of (X) are 102.5® and 

100.3® respectively (116). Although no structures of deriva­

tives of (VI) have been determined, it is probable that the 

angles in the oxide are nearly tetrahedral. Thus both s char­

acter and effective nuclear charge can account for the trends 

observed and it is difficult to separate the two effects. 

One criticism of the s character argument is that it does 

not readily take into account changes in signs of coupling con­

stants. Thus an increase in s character is associated with an 

increase in the coupling constant. Manatt et al. (89), however, 

have shown that in the H-C-P fragment, the geminal coupling 

becomes smaller or more negative as tiie s character of the 
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phosphorus atom bonding orbitals to carbon increases while the 

geminal coupling becomes greater or more positive as the s 

character of the carbon atom bonding orbital to phosphorus 

increases. 

From Equations 3 and 4 it can be seen that in the molecular 

orbital theory of Pople and Santry (40), the Fermi contact con­

tribution to a coupling constant is dependent on the magnitudes 

of the valence s orbitals at the coupling nuclei, the inverse 

of the energy difference - Ej) ̂  and the product of the 

coefficients of the s atomic orbitals of the coupling sites in 

the molecular orbitals (occupied) and ^ (unoccupied) . 

Although the magnitude of the s electron density at the nucleus 

would be expected to increase with substituents of increasing 

electronegativity, causing an increase in Jpp/ it is unlikely 

that the variation in coupling constants can be explained by 

this. It would appear that the dominant effect in determining 

coupling constants is the mutual polarizability. Good evidence 

for this is given by the molecule cis-PtCl(CH^)(XII)g which has 

two platinum-phosphorus coupling constants which differ widely 

(1719 Hz and 4179 Hz) (107). It is obvious that the s electron 

density at Pt must be the same for each coupling constant and 

that those at P will be nearly the same since identical ligands 

are involved. The large difference in must therefore be 

due to differences in the orbitals used in the Pt-P bonds. 

Moreover, although the s electron densities at the nuclei can 
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affect the magnitudes of coupling constants they cannot affect 

2 
the signs. Thus the change in sign for Jpp for the trans 

chromium complexes shows that changes in the coefficients of 

the s atomic orbitals must be dominating any change in the 

magnitudes of the s orbitals at the nuclei. 

2 The difficulty in predicting even the sign of Jpp in co­

ordination complexes is illustrated in the simple M.O. diagram 

in Figure 15. This diagram would be suitable for a trans 

disubstituted Group VI carbonyl complex assuming symmetry 

in which only the a-bonds between the metal and the two phos­

phorus atoms have been considered and sp hybrids have been 

employed for the phosphorus orbitals. The arrows connect the 

molecular orbitals that contribute to the Fermi contact term. 

The solid and broken arrows represent transitions which give 

positive and negative contributions, respectively, to the Fermi 

2 term. Clearly the magnitude and sign of Jpp will depend on 

the order of these molecular orbitals, their energy differences 

and the magnitudes of the s atomic orbitals of phosphorus in 

the various molecular orbitals. Without detailed calculations, 

2 
however, it is impossible to predict the signs of Jpp- As 

more electronegative substituents are placed on phosphorus the 

degree of s character in the sp hybrids of the phosphorus atoms 

should increase but it is not possible a priori to predict in 

which molecular orbitals this s character will concentrate. 

Thus even trends within a given series of the same metal with 

the same stereochemistry are•not predictable.. With cis compounds 
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Figure 15. Molecular orbital diagram for a disubstituted com­
plex of symmetry considering only the o-bonds 

formed with the phosphorus atoms. The positive and 
negative contributions to the Fermi contact term 
are illustrated by solid and broken arrows respec­
tively 
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2 of lower symmetry prediction of signs of Jpp becomes even more 

difficult due to extensive configuration interaction. 

Although the results do not indicate that metal-phosphorus 

ir-bonding is important in affecting coupling constants this 

does not mean that metal-phosphorus n-bonding is absent. In­

deed, far infrared studies (118, 119) indicate that ir-bonding 

is significant in determining trends in metal-phosphorus 

stretching frequencies. This presents the intriguing possibil­

ity that n.m.r. in conjunction with far infrared studies may 

yield considerable information about metal-phosphorus bonding 

which might allow the separation of a and ir effects. 
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SUGGESTIONS FOR FUTURE WORK 

In this dissertation are reported the initial study of 

31 31 
P- P coupling in transition metal complexes. A large number 

of possibilities are open for future work. In any future deter-

2 minations of Jppf the signs of the coupling constants should 

2 
be obtained whenever possible. Also the evaluation of Jpp by 

computer simulation should be done only if the values cannot 

be obtained by other methods. 

Although paramagnetic impurities in solutions of MnfCO^LgX 

(L = phosphorus ligand, X = halogen) caused slight broadening 

of the lines in the n.m.r. spectra making them unsuitable for 

analysis by computer simulation, it is probable that the signs 

2 and magnitudes of Jpp can be obtained by double resonance 

techniques. These and the anologous rhenium complexes should 

be studied. The effects of other ligands could be studied with 

these compounds since CI, Br, I and other anionic ligands can 

be coordinated to the metal. 

Effects of the electronegativity of substituents could be 

studied further by preparing complexes with ligands of the type 

PRXg, PRgX, P{0R)X2, P(0R)2X and possibly PCNRglgX (R = methyl, 

X = CI, Br and perhaps I). 

Complexes of other metals, notably the platinum metals Ru, 

Rh, Os and Ir, should be prepared. It would be advantageous to 

2 
study the effect of the oxidation state of the metal on Jpp 

as well. 
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Trisubstituted meridial complexes of the Group VI metal 

carbonyls should be prepared to further test the hypothesis 

2 that TT-bonding is of little importance in affecting Jpp* 

Preparation of these compounds however might be quite difficult. 

More complexes of (II) and (III) should be prepared. Al­

though the values of N(^J^jj + in complexes of these 

2 ligands were approximately zero, the expected values of Jpp 

are small enough that the outer lines should be detectable. 

Mixed ligand complexes of Cr, Mo, W, Mn, Re and Fe should 

be prepared. The present instrumentation permits obtaining the 

^^P spectrum by INDOR techniques with sample quantities that 

31 a^re much smaller than those required to observe the P spec­

trum directly. Of primary interest would be mixed ligand com­

plexes containing one of (I), (II), (III), (X) or (XI). With 

these ligands in a complex it should be possible to determine 

2 
the signs of Jpp because the phosphorus atom in the other 

ligand will couple to the protons or fluorine in these ligands 

as well as the phosphorus atoms. It should be noted that pre­

liminary studies have indicated that pure mixed ligand complexes 

of manganese could be obtained readily. 

The dependence of the isomerization of cis-Mo(CO)^(IX)g to 

the trans isomer on the length of the alkyl chain in the 4 

position of the ligand and the failure of cis-Mo(CO)^(VA)g to 

isomerize should be investigated more fully. 
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The unusual properties of (VI) should be examined by 

observing the effects of temperature, concentration and solvent 

on the n.m.r., near infrared and far infrared spectra of (VI), 

the oxide and sulfide of (VI), as well as mono and disubstituted 

complexes of (VI). 

31 31 
In order to further understand P- P coupling in tran­

sition metal complexes it is necessary to carry out molecular 

orbital calculations. Unfortunately the symmetry of many of 

the complexes is too low to make this feasible and the spectra 

of complexes with more phosphorus ligands giving higher sym­

metry generally can not be analyzed. 

Possibilities for molecular orbital calculations are 

nickel and platinum complexes of the type 2 where L and L' 

are chemically similar ligands such as two phosphites or two 

phosphines. If the ligands were chosen such that the ^^P 

31 chemical shifts were significantly different then the P spec­

trum with noise decoupling of the protons would be a simple 

AgXg system. However the ligands could be assumed to be 

identical for the purpose of the molecular orbital calculations 

resulting in a molecule of symmetry. 
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APPENDIX 

The computer program VIRCUP B. described here was written 

to analyze the spin system. From the input data the 

program will calculate the line positions and relative inten­

sities ysing Equations 5 to 11, scale the intensities to cor­

respond to the observed spectrum, and plot the band shape such 

that a direct comparison of the fit may be made with the ob­

served spectrum. The following assumptions and restrictions 

have been made: (a) all nuclei have spin 1/2 (b) = 0 

(c) ® (d) n 18 (e) all transitions have 

Lorentzian line shape with uniform line widths. Although the 

restriction that = 0 is not necessitated by the computer 

program it is required in order to determine from Equa­

tions 7, 8 and 11. From these equations it can be seen that 

either L or must be known in order to determine the other 

by a curve fitting procedure. In most of the complexes the 

assumption that = 0 is reasonable since the A and X* nuclei 

are separated by five bonds. When = 0, L = N = which 

is the separation of the intense doublet in the spectra. In 

the case where 0, J^, must be determined by other means 

and then the program can be used to determine L. 

A Lorentzian curve is given by the equation: 

y = 1—- 14 
a + bx'^ 



www.manaraa.com

113 

The Bloch equations (120) describing the interaction of the 

nuclear magnetization with a radiofrequency field can be put in 

this form (for the absorption mode) if a steady state is 

assumed. Thus a Lorentzian line shape is valid only under slow 

passage conditions. From Equation 14 it can be shown that; 

w. = " 

a = 16 

where x.is the value of x at y = 1/2 y . Therefore the 1/2 / ' -'max. 

height and width at half height completely describe any Lorent­

zian curve. 

In the following sections are given the input data, the 

computer listing and descriptions of operations performed, the 

output data and a curve matching. As an example throughout we 

shall use cis-PdCl^(IXD)^. 

Input Data 

Card 1 

Columns 1-20 Alphameric label for x-axis of graph. 

Columns 21-40 Alphameric label for y-axis of graph. 

Columns 41-60 Alphameric label for graph identification. 

Card 1 has FORMAT (16A4). 

Card 2 to M-1 

Columns 1-3 Job number to identify data set FORMAT (A3). 

Columns 4-5 Value of n in X^AA'X'^ (maximum value = 18) 

FORMAT (12). 
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Columns 6-11 Value of in Hz FORMAT (F6.2). 

Columns 12-17 Value of in Hz FORMAT (F6.2). 

Columns 18-25 Estimated value of in Hz FORMAT (F8.2). 

Columns 26-30 Width of one line of the intense doublet 

separated by N at half height in Hz FORMAT (F5.2). 

Columns 31-35 Height of one line of the intense doublet 

separated by N in cm. FORMAT (F5.2). 

Columns 36-40 Scale factor - number of Hz/cm. in observed 

spectrum FORMAT (F5.2). 

Columns 41-56 Name of complex FORMAT (4A4). 

Card M 

Columns 4-5 Value of 00 to stop. 

Description of Program 

Statements 1-5 Input data is read in. 

Statements 6-10 Data set is defined for graph 

Statements 11-15 If input for n in X^AA'X'^ is zero the pro­

gram stops. If input is greater than 18 the data set is 

rejected and an error message is printed out. 

Statements 16-18 Values of N and L are calculated using Equa­

tions 5 and 6. 

Statements 19-23 Input data is printed out. 

Statements 24-29 Line positions and relative intensities of 

doublet separated by N is calculated. 

Statements 30-31 DO loop is begun altering %. 

Statements 32-40 Line positions for varying values of x are 



www.manaraa.com

115 

determined using Equations 7 and 8. 

Statements 41-42 Perturbation factor g is calculated using 

Equation 11. 

Statements 43-57 Line intensities for varying values of x are 

calculated and normalized to a relative intensity of 1.0 for 

each line of intense doublet separated by N. 

Statements 58-63 All line positions and relative intensities 

are printed out. 

Statements 64-65 Line positions are scaled in cm. to fit 

observed spectrum. 

Statements 66-75 Lorentzian line shape for each line is cal­

culated using relative intensity of each line of main doublet 

of 1.0 and intensity due to overlapping lines are summed to­

gether at intervals of 0.0508 cm. over 15.24 cms. 

Statements 76-80 The peak point of the main doublet is found. 

Statements 81-83 The height of the main doublet, the cal­

culated separation of the main doublet and the scale of the 

graph are printed out. 

Statements 84-85 All intensities are normalized to the 

observed height of the main doublet. 

statement 86 The subroutine for the Simplotter is called. In­

put for the Simplotter is defined as follows. 
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Simplotter Input 

CALL GRAPH (NPTS, X, Y, KS, MODE, XSIZE, YSIZE, XSF, XMIN, YSF, 

YMIN, IXLB, lYLB, IGLBl, JLAB) 

NPTS The magnitude represents the number of (x, y) points to 

be plotted; here 300. 

X The name of the array containing the x- co-ordinates of the 

points. 

Y The name of the array containing the y- co-ordinates of the 

points. 

KS The plotting symbol to be used (if any); here none. 

MODE This specifies the plotting method to be used; here 

straight lines are drawn from point to point but the points are 

not plotted. 

XSIZE This defines the length of the x-axis in inches and 

whether a linear or log scale is wanted; here 6.0 inches, linear 

scale. 

YSIZE This is similar to XSIZE for y-axis; here 10.0 inches, 

linear scale. 

XSF This defines the scale factor (units/inch) on the x-axis; 

here 2.54 cm./inch. 

XMIN The beginning point of the graph on the x-axis; here zero. 

YSF This i§ similar to XSF on the y-axis. 

YMIN This is similar to XMIN on the y-axis. 

IXBL Alphabetic label for x-axis; here C.P.S. TIMES SCALE 

lYLB Alphabetic label for y-axis; here LINE INTENSITY IN CM. 
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IGLBl Alphabetic label for graph indentification; here VIRCUP 

B. 

JLAB Alphabetic label to identify data set. 
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VTkCUP s OGILVIE 
SYNTHf^IS AND VARIABLE SCALE PLOTTING OF XNAAXN SrtCTxUM 
MAXIdUm VALUE UF M IS 18 
DATA CAxi) FijRMAT: COLS. 1-3 JUBNu,4-5 N, 6-11 JAX, 12-17 JAXPRIMtf 
18-2? JAAPP.IHE» 26-30 WIDTH, 31-35 HIGH, 36-40 SC4LE, 41-56 NAME 
FIRST DATA CARD HAS ALPHAMERIC GKAPH LABELS. LAST MUST HAVE N=û. 
DIMENSION XLl!ME(74),XIM(74) ,X(-i00),Y(30G) ,IXL3(î>), IYLB(5), IGL61(5) 

i,JLA3('5),NAME(4) 
READ (1,4) IXLB,lYLBtlGLBl 

4 FORMAT (16A4) 
1 READ (1,2)JDBN0,N,AX,AXP,AAP,WIDTH,HIGH,SCALL,NAME(1),NAME(2), 
1NAME(3),NAME(4) 
2 FORMAT CA3,I2,2r6.2,F3.2,3F5.2,4A4) 

JLA8(1>=J0BKG 
JLA8(2) =NAKE(1) 
JLA6(3) =NAVL (2) 
JLAB(4) =NAMt(3) 
JLAB(5) =NAMfc(4) 
IF (N)3C,3C,ii3 

33 IF (N-18)3,3,31 
31 WRITE (3,32)J08N0 
32 FORMAT (lHl,]r.Hi3ATA CARD ,A3,22H HAS .N GREATER THAN 18) 

GO TO 1 
3 HNFL=FLCAT(N) 

EL=AX-AXP 
EN=AX+AXP 
WRITE (3,12) Ju8N0,N,N,NAME(l),NAME(2),NAME(3),NAME(4) 
WRITE (3,13)AX,AXP,AAP,WI0TH 

12 FORMAT( lHl,30XbHVIRCUP (3,/9X,A3,52H COMPUTAIICN CF LINE POSITIONS 
lAND INTENSITIES FOR X,I2,3HAAX,I2,/25X,14H SPECTRUM OF ,4A4) 

13 FORMAT (7X6HJAX = ,F6.2,12H JAXPRIHE = ,F6.2,12H JAAPRIME = , 
1F8.2,13H LIMEWIDTH = ,F5.2//) 

14 FORMAT(5X2HN0,bXHHPUSIlIUN,4X9HINT[NSITY,l2X2HNU,5X8HP0SrTI0N, 
14X9HINÏENSITY) 
FN0K=2.**(2*<N-1)) 
XLIME(i)=EN/2. 
XLINE(2*N+2)=-eN/2. 
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XIi\( l) = l. 
XIN(2fN+;)=l. 
WRITE (3.1't) 
CHI=1. 
DO 1 = 1,N 
PING=50RT((CHI**2*cL**2)+AAP**2) 
P0NG=SQRT(((CHI-l.)**2*aL**2)+aAP**2) 
XLINE(I+1)=(PINO-PONG) / 2 .  
J=I+|V|+1 
K=2*N+I+Z 
M=3*N+I+; 
XLINE(J)=(PING+POMGJ/2. 
XLINE(K)=-XLINE(I+1) 
XLINE(M)=-XLINE(J) 
PANG=CHIv(CHI-l.)*EL**2+AAP**2 
GEE=PANG/(?ING*PONG) 
CLM=1. 
IF CEhFL-CHI)2I,21,22 

22 TIMES=2.*ENFL-1. 
23 COM=CGM*TI.seS 

TIMES=TIHES-I. 
IF (TIMES-ENFL-CHI*24,23,23 

?4 DIV=ENFL-CHI 
25 CLM=CCM/DIV 

niV=DIV-l. 
IF (CIV)2I,21,25 

21 XIN(I+1)=CCK*(1.+GEE)/(2.*FN0R) 
XIN(J)=C0M*(1.-GEE)/(2.*FN0R) 
X I N ( K ) = X I N ( I + l )  
XIN(MI=XIiV(J) 

99 C.HI=ChI + l. 
L=4*N+2 
LC=2*N+1 
00 9C LA=1,LC 
LB=LA+2*N+1 

15 F0RMAT(5XI2,2XF11.3,5XF6.4,14XI2,2XFil.3,5XF6.4) 
90 WRITE (3,l5ILA,XLINE(LA),XINtLA),L3,XLINE«LB),XIN(L.3) 
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eu lui 1=1,L 
i::l XLINE<i)=XLINk(l)/SCALE 

C LINb POSITIONS NOW IN CENTIMETRES 
XCC=C, 
1=1 

60 xu)=xc:i 
Y(I)=û. 
kIÛ=4.*(SCALE/MlDTH)**2 
DU 66 K=1,L 

66 Y(I)=Y(I)+XIN(K)/<1.+WID*(XLINE<K)-X(I))**2) 
XCU=XC0+.G5CS 

C STtP OF .0508 IS F U R  300 POINTS IN 15.24 CM (6 IN.) 
1=1 + 1 
IF (I-3Gu)6ù,6C,ô7 

67 LlN=e,N/( SCALE*.1016 )+4. 
70 IF (Y(LIN-l)-Y(LIN))72,72,71 
71 LIN=LIN-1 

GO TO 70 
72 FACT=HIGH/Y(LIN) 

C FINDS PC\K PGliVT UF MAIN DCUBLcT-MAX ERROR 1 POINT,(.05»SCALE C/S) 
SPACE=2.*X(LIN)*SCALE 
WRITE (3,1Ô)HIGH,SPACE,SCALE 

16 FOR.MAT( IX31HIN PLOT MAIN DOUBLET PEAKS ARE ,F5.2,17H CM HIGH, SPAC 
Itf) ,F5.2,LiH r.P.S. APART,/1X21H HORIZONTAL SCALE IS ,F5.2,15H C.P 
2.S. Pcrt CM.) 
UO 68 1=1,3CC 

68 Y(I)=Y(I)*FAC1 
C SPECTRUM HEIGHT NOW NORMALISED 

CALL GRAPH(3u0,X,Y,O,4,6.O,10.O,2.54,0.O,2.54,U.O,IXLB,IYLH,IGL31 
l.JLAi) 
GO TO 1 

30 STOP yS 
ENO 
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Figure 16. Computer output for cis-PdCl^(IXD)p» The line positions are given in 

Hz from and the intensities are given relative to each line of the 

doublet of separation N having an intensity of 1 
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VIPXUP 3 
242 COMPUTATION GF LINE POSITIONS ANO INTENSITIES FOR X 6AAX 6 

SPECTRUM OF CIS-P0CL2{IXD}2 
JAX = 5.50 JAXPRIME = 0.0 JAAPRIMG = 65.00 LINEWIDTH = 0. 

NO POSITION INTENSITY NO POSITION INTENSITY 
1 2.750 1.0000 14 -2.750 1.0000 
2 0.116 0.4504 15 -0.116 0.4504 
3 0.346 0.3217 16 —0.346 0.3217 
4 0.569 0.1609 17 -0.569 0.1609 
5 0.780 0.0536 18 -0.780 0.0536 
6 0.978 0.0107 19 -0.978 0.0107 
7 1.160 0.0010 20 -1.160 0.0010 
8 65.116 0.0008 21 -65.116 0.0008 
9 65.578 0.0006 22 -65.578 0.0006 
10 66.493 0.0003 23 -66.493 0.0003 
11 67.842 O.OOOl 24 -67.842 0.0001 
12 69.600 0.0000 25 -69.600 O.OOOO 
13 71.738 0.0000 26 -71.738 0.0000 

PLOT MAIN DOUBLET PEAKS ARE 10.90 CM HIGH, SPACED 5.49 C. P.S. APART 
HORIZONTAL SCALE IS 1.00 C.P.S. PER CM. 
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Figure 17. Simplotter output of the data given in Figure 16 
for cis-PdCl^ (IXD)^ 
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UNE INTENSITY" IN CM 
7.62 10.16 12.70 5.08 22.86 20.32 0,00 17.78 

z 
m 
or 

fua 
nc en 
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Figure 18. Comparison of the simplotter output in Figure 17 
with the experimental spectrum of cis-PdCl^(IXD)^ 
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CALCULATED EXPERIMENTAL 
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